10. [8 points] The shape of Percy's favorite hill on his uncle's farm can be visualized as the graph of a piecewise function $y=f(x)$. The function is quadratic on the interval $[-5,3)$, and it's exponential on the interval [3,10]. The function satisfies the following properties:

- $x=-5$ is a zero of $f(x)$.
- $f(x)$ has y-intercept 10 .
- $f(2)=7$.
- $f(3)=4$.
- For $3 \leq x \leq 9$, when x increases by one, $f(x)$ decreases by 20%.

Write a formula for $f(x)$. Your answer will be graded based on whether it satisfies the criteria in the problem.

$$
f(x)= \begin{cases}\frac{-\frac{1}{2}(x+5)(x-4)}{4(0.8)^{-3}(0.8)^{x}} & \text { for }-5 \leq x<3 \\ \frac{\text { for } 3 \leq x \leq 10}{}\end{cases}
$$

Solution: The quadratic part of $f(x)$ can be written $a(x+5)(x-r)$ since -5 is a zero. $f(0)=10$, so $-5 a r=10$ or $-a r=2$. We also know $f(2)=7$, so $7=7 a(2-r)$ or $1=2 a-a r$. Combining these facts, we get $1=2 a+2$ or $a=-1 / 2$. This means $r=4$.

The exponential part of $f(x)$ has growth factor 0.8 because it's decreasing by 20% for each increase in x by one, so we can write it as $a(0.8)^{x}$. Using $f(3)=4$, we get $4=a(0.8)^{3}$ or $a=4(0.8)^{-3}$.

