6. [14 points] After a day of work on the farm, Percy likes to toss corn cobs from the second story window of the barn to the ground. On one toss, the corn cob follows a parabolic path $h(x)=-x^{2}+b x+c$ where $h(x)$ is the height of the cob above the ground, in feet, when it is a horizontal distance x feet from the barn. The numbers b and c are constants.
a. [3 points] Interpret the vertical intercept of $h(x)$ in the context of this problem.

Solution: The vertical intercept of $h(x)$ is the height of the window above the ground (in feet).
b. [4 points] If the window is 9 feet from the ground, and the cob hits the ground 9 feet from the barn, find the values of the constants b and c. Show your work.

$$
\begin{aligned}
& b=\underline{8} \\
& c=\lcm{9}
\end{aligned}
$$

Solution: The information in the problem tells us that $(0,9)$ and $(9,0)$ are both on path of the cob before the first bounce. We see $c=9$ immediately using the point $(0,9)$, so we just need to find b in $h(x)=-x^{2}+b x+9$. Using 9 for x and 0 for $h(x), 0=-81+9 b+9$, so $b=8$.
c. [4 points] After the cob bounces, it follows a path given by $p(x)=-\frac{1}{3} x^{2}+8 x-45$ where $p(x)$ is the height of the cob above the ground, in feet, when it is a horizontal distance x feet from the barn. By completing the square, find the maximum height the cob achieves after it bounces. You must show all steps of your calculation.

$$
\text { maximum height }=3 \text { feet }
$$

Solution:

$$
\begin{aligned}
p(x) & =-\frac{1}{3} x^{2}+8 x-45 \\
& =-\frac{1}{3}\left(x^{2}-24 x\right)-45 \\
& =-\frac{1}{3}\left(x^{2}-24 x+144\right)-45+48 \\
& =-\frac{1}{3}(x-12)^{2}+3
\end{aligned}
$$

So 3 feet off the ground is the maximum height achieved by the cob.
d. [3 points] Find the distance the cob is from the barn when it hits the ground for the second time. Show your work. Hint: Use the quadratic formula.

$$
\text { distance }=15 \text { feet }
$$

Solution: The quadratic formula gives

$$
x=\frac{-8 \pm \sqrt{64-4(-1 / 3)(-45)}}{-2 / 3}=\frac{-8 \pm 2}{-2 / 3} .
$$

So $x=9,15$, but $x=9$ is the location of the first bounce, so the second bounce must be at $x=15$.

