9. [9 points] For this entire problem assume:

- $f(x)$ is a decreasing function.
- $h(x)$ is a quadratic function.
- $r(x)$ is an exponential function with growth factor $\frac{1}{3}$, satisfying $r(0)>0$.
- All of the above functions have domain $(-\infty, \infty)$.
a. [4 points] Which of the following COULD be true? Circle all that apply. Unclear answers will be marked incorrect.
(i) The function $f(x)$ is concave up.
(ii) The function $f(x)$ is exponential.
(iii) The function $f(x)$ is quadratic.
(iv) The function $f(x)$ has no x-intercepts.
(v) The average rate of change of $f(x)$ between $x=1$ and $x=5$ is 1 .
b. [3 points] Which of the following MUST be true? Circle all that apply. Unclear answers will be marked incorrect.
(i) The function $h(x)$ has at least one x-intercept.
(ii) The average rate of change of $h(x)$ between $x=1$ and $x=2$ is less than the average rate of change of $h(x)$ between $x=2$ and $x=3$.
(iii) The average rate of change of $r(x)$ between $x=1$ and $x=2$ is less than the average rate of change of $r(x)$ between $x=2$ and $x=3$.
(iv) $r(-2)$ is positive.
c. [2 points] Compute $\frac{r(100)}{r(98)}$ in exact form.

$$
\frac{r(100)}{r(98)}=1 / 9
$$

