1. [11 points] Mad scientist Kiki LeBlanc is continuing her experiments with size-change technology. She is trying out her technology on ants. Below is a table showing some data for w, the weight of an ant in grams, ℓ , the length of an ant in cm, and t, the strength of an ant in marches (a unit of strength). Suppose t is a function of w.

w	0.1	0.25	1	2	2.5
ℓ	0.05	0.10	0.15	0.2	0.25
t	5	4	3	4	5

- **a**. [3 points] Circle all statements that could be true given the information in the table. Any unclear answers will be marked incorrect.
 - ℓ could be a function of t.
 - t could be a function of ℓ .
 - w could be a *linear* function of ℓ .
 - ℓ could be a function of w.
- **b.** [3 points] If the function f relates t and w, i.e. t = f(w), could f be only concave up, only concave down, or is it not possible for f to be either only concave up or only concave down? Give a brief justification.

Solution: f could be only concave up because the average rates of change between consecutive values in the table are increasing.

c. [3 points] Find the average rate of change of t between w = 0.25 and w = 2.5. Leave your answer in exact form, and don't forget to include units.

The average rate of change of t between w = 0.25 and w = 2.5 is $\frac{1}{2.25}$ marches/gram.

d. [2 points] Give a practical interpretation of the rate of change you found in part (c).

Solution: Our answer from (c) means that, on average, between weights of 0.25g and 2.5g, ants gain $\frac{1}{2.25}$ of strength for each increase in weight of 1g.

page 2