2. [12 points] Consider the function $y=p(x)=2 x^{2}-\sqrt{33} x-6$.
a. [4 points] Find the zeros of $p(x)$ in exact form, if there are any, or explain why there aren't any. Show your work. Answers obtained using a calculator with no work shown will receive no credit.

The zeros of $p(x)$ are $\frac{\sqrt{33} \pm 9}{4}$
Solution: Using the quadratic formula, we have

$$
x=\frac{\sqrt{33} \pm \sqrt{33-4(-6)(2)}}{4}=\frac{\sqrt{33} \pm 9}{4}
$$

b. [5 points] Find the x - and y-coordinates of the vertex of $p(x)$ by completing the square. You must show all your steps and write $p(x)$ in vertex form to receive credit.

The vertex of $p(x)$ is $\quad\left(\frac{\sqrt{33}}{4},-\frac{81}{8}\right)$

$$
\begin{aligned}
& \text { Solution: } \quad p(x)=2 x^{2}-\sqrt{33} x-6 . \\
& p(x)=2\left(x^{2}-\frac{\sqrt{33}}{2} x\right)-6 . \\
& p(x)=2\left(x^{2}-\frac{\sqrt{33}}{2} x+\frac{33}{16}\right)-6-2\left(\frac{33}{16}\right) . \\
& p(x)=2\left(x^{2}-\frac{\sqrt{33}}{4}\right)^{2}-\frac{81}{8} .
\end{aligned}
$$

c. [3 points] Suppose $p(x+h)=2 x^{2}+\sqrt{33} x-6$ for some number h. Find h. Support your answer with graphical or algebraic evidence.

$$
h=\underline{\frac{\sqrt{33}}{2}}
$$

Solution: Completing the square for $p(x+h)$ is identical to the calculation for $p(x)$ except you have $\left(x+\frac{\sqrt{33}}{4}\right)^{2}$ instead of $\left(x-\frac{\sqrt{33}}{4}\right)^{2}$. This means

$$
p(x+h)=2\left(x^{2}+\frac{\sqrt{33}}{4}\right)^{2}-\frac{81}{8} .
$$

This means the vertex of this new function is $\left(-\frac{\sqrt{33}}{4},-\frac{81}{8}\right)$, so the shift must have been $\frac{\sqrt{33}}{2}$ to the left.

