2. [8 points] Consider the following table of values for x, A, B, and C.

x	2	4	8	10
A	29	24	14	9
B	15.6	18.2	28.2	18.2
C	0	10	0	-3

For each of the following, decide whether the statement could be true. Briefly explain your reasoning.
a. B is a function of A.

Solution:

True: Since the A-values in the table don't repeat, any of the other variables is a function of A. In particular, B is a function of A.
b. A is a function of C.

Solution: False: There is an input $(C=0)$ which corresponds to more than one output ($A=29$ and $A=14$), and so A cannot be a function of C.
c. A is a linear function of x.

Solution: True: As in part (a) above, since the A-values in the table don't repeat, A is a function of x. Moreover, note that the average rate of change $\frac{\Delta A}{\Delta x}$ is equal to $-\frac{5}{2}$ on all intervals in the table:

$$
\begin{array}{ll}
{[2,4]:} & \frac{\Delta A}{\Delta x}=\frac{24-29}{4-2}=-\frac{5}{2} \\
{[4,8]:} & \frac{\Delta A}{\Delta x}=\frac{14-24}{8-4}=-\frac{5}{2} \\
{[8,10]:} & \frac{\Delta A}{\Delta x}=\frac{9-14}{10-8}=-\frac{5}{2}
\end{array}
$$

Therefore, A could be a linear function of x.
d. If $C=f(x)$, then $f(x)$ is concave down.

Solution:

False: $f(x)$ has average rate of change

$$
\frac{\Delta C}{\Delta x}=\frac{0-10}{8-4}=-\frac{5}{2}
$$

on the interval $[4,8]$, but $f(x)$ has average rate of change

$$
\frac{\Delta C}{\Delta x}=\frac{-3-0}{10-8}=-\frac{3}{2}
$$

on the interval $[8,10]$. Since $-\frac{5}{2}<-\frac{3}{2}, \frac{\Delta C}{\Delta x}$ is not decreasing, and so $f(x) \underline{\text { cannot be concave- }}$ down.

