3. [11 points] The graph below shows part of

- a quadratic function $q(x)$ with vertex and one zero marked
- an exponential function $r(x)=a b^{x}$ that intersects $q(x)$ on the y-axis.

a. [4 points] Find a formula for $q(x)$.

Since $q(x)$ has vertex $(4,2)$, it has a formula in vertex form of the form

$$
q(x)=k(x-4)^{2}+2
$$

for some non-zero real number k (which is the leading coefficient). We also know that 9 is a zero of $q(x)$; that is, $q(9)=0$. We can use this equation to solve for k :

$$
\begin{gathered}
k(9-4)^{2}+2=0 \\
k \cdot 25=-2 \\
k=-\frac{2}{25}
\end{gathered}
$$

So $q(x)$ has formula $q(x)=-\frac{2}{25}(x-4)^{2}+2$.
b. [2 points] What is the x-coordinate of the other zero of $q(x)$?

Solution:

Recall that the vertex $(4,2)$ lies on the vertical axis of symmetry $x=4$ of the graph of $q(x)$. Since one zero $x=9$ lies 5 units to the right of this axis, the other zero lies 5 units to the left of this axis. Thus $x=-1$ is the other zero of $q(x)$. We can confirm this by computing $q(-1)$ from our formula.
Alternatively, you can also solve the equation $q(x)=0$, possibly by converting to a different form.
Recall that the formula for $r(x)$ is $r(x)=a b^{x}$. Use the graph and your formula for $q(x)$ to answer the following questions.
c. [3 points] Which of the options below could be true? Briefly explain your answer.

$$
a<0 \quad 0<a<1 \quad a>1
$$

Solution:

Note that the graphs of $q(x)$ and $r(x)$ intersect along the y-axis. This implies that $q(0)=$ $r(0)$. We can use this equation to solve for a :

$$
a=a b^{0}=r(0)=q(0)=-\frac{2}{25}(0-4)^{2}+2=-\frac{32}{25}+\frac{50}{25}=\frac{18}{25} .
$$

Thus $0<a<1$.
d. [2 points] Which of the options below could be true? Briefly explain your answer.

$$
b<0 \quad 0<b<1 \quad b>1
$$

Solution:

Since $r(x)$ has positive initial value and is decreasing, it is exhibiting exponential decay, and so its growth factor b satisfies the inequality $0<b<1$.

