5. [12 points] Jack is starting a business teaching others to paint. He has come up with the following pricing plan.

- For each lesson, a client has to pay a flat fee of $6 to cover the cost of the art supplies they will use.
- He charges $2 per minute for the first 60 minutes of the lesson.
- He charges $0.50 per minute for each minute after that.
- Each lesson lasts at most 120 minutes.

Let $C(m)$ be the amount of money he charges for a lesson that is m minutes long.

a. [2 points] Evaluate $C(70)$.

Solution:

$C(70)$ is the amount of money (measured in dollars) that Jack charges for a lesson that is 70 minutes long. For such a lesson, Jack charges a flat fee of $6 to cover the cost of art supplies, $2 per minute for the first 60 minutes of the lesson, and $0.50 per minute for the final ten minutes of the lesson. Therefore,

$$C(70) = 6 + 2 \cdot 60 + 0.50 \cdot 10 = 6 + 120 + 5 = 131$$

That is, Jack charges $131 for a 70 minute lesson.
b. [6 points] Find a formula for $C(m)$. Use standard piecewise function notation:

$$C(m) = \begin{cases}
6 + 2m, & \text{if } 0 < m \leq 60 \\
96 + 0.50m, & \text{if } 60 < m \leq 120.
\end{cases}$$

\textbf{Solution:}

Since a lesson can last from 0 to 120 minutes long, the domain of the function $C(m)$ is given by the inequality $0 < m \leq 120$. Since Jack charges different rates for the first 60 minutes of a lesson and any remaining time afterwards, we will split this domain into two pieces: $0 < m \leq 60$, and $60 < m \leq 120$.

- If a lesson is $0 < m \leq 60$ minutes long, then Jack charges a flat fee of $6 to cover the cost of art supplies as well as $2 per minute for all m minutes. Thus for $0 < m \leq 60$,

 $$C(m) = 6 + 2m.$$

- On the other hand, if the lesson is $60 < m \leq 120$ minutes long, then Jack charges a flat fee of $6 to cover the cost of art supplies, $2 per minute for the first 60 minutes, and $0.50 per minute for the remaining $m - 60$ minutes. Thus

 $$C(m) = 6 + 2 \cdot 60 + 0.50 (m - 60) = 96 + 0.50m.$$

This gives the following piecewise-defined formula for $C(m)$:

$$C(m) = \begin{cases}
6 + 2m, & \text{if } 0 < m \leq 60 \\
96 + 0.50m, & \text{if } 60 < m \leq 120.
\end{cases}$$
c. [4 points] The function \(d = C(m) \), where \(d \) is the cost (in dollars) of a painting lesson that lasts \(m \) minutes, is invertible. Write a formula for its inverse \(C^{-1}(d) \) using standard piecewise function notation.

Solution:

In order to find a formula for the inverse of \(C(m) \), we must invert the formulas given for \(C(m) \) above. Since these are linear functions, this can be done algebraically as follows:

\[
\begin{align*}
 d &= 6 + 2m \\
 2m &= d - 6 \\
 m &= 0.5d - 3 \\
 d &= 96 + 0.50m \\
 0.50m &= d - 96 \\
 m &= 2d - 192
\end{align*}
\]

We must also find the domains on which these formulas are valid. In order to do this, remember that inverting a function switches its domain and range. The same thing is true for the pieces of a piecewise defined function.

The formula \(C(m) = 6 + 2m \) is valid on the domain \(0 < m \leq 60 \). On this domain, this formula has range \(6 < d \leq 126 \). Thus the formula \(C^{-1}(d) = 0.5d - 3 \) is valid on the interval \(6 < d \leq 126 \).

Similarly, the formula \(C(d) = 96 + 0.50m \) is valid on the domain \(60 < m \leq 120 \). On this domain, this formula has range \(126 < d \leq 156 \). Thus the formula \(C^{-1}(d) = 2d - 192 \) is valid on the interval \(126 < d \leq 156 \). In summary, the inverse function \(m = C^{-1}(d) \) has piecewise-defined formula

\[
C^{-1}(d) = \begin{cases}
0.5d - 3, & \text{if } 6 < d \leq 126 \\
2d - 192, & \text{if } 126 < d \leq 156.
\end{cases}
\]