1. [7 points] The entire graph of a function $g(x)$ is shown below to the left. Also shown is a table of some values for a different function $h(x)$. Assume that the function $h(x)$ is invertible.

x	-3	-1	0	1	3	4
$h(x)$	7	5	3	0	-2	-3

a. [3 points] Find the domain of $g(x)$ and range of $g(x)$. Give your answers using interval notation or using inequalities. You do not need to explain or justify your answer.

Answer: $g(x)$ has domain \qquad and range \qquad $[-2,-1] \cup[0,2)$
b. [4 points] Find each of the following, or write N/A if a value does not exist or there is not enough information to find it. You do not need to show work.
i. $h^{-1}(-3)$

Answer: $h^{-1}(-3)=$
ii. $g(h(0))$

Answer: $g(h(0))=-\quad-1$
iii. all values of x so that $g(h(x))=1$

Answer: $x=$ \qquad
2. [5 points] On the axes below, sketch the graph of a single possible function $y=f(x)$ satisfying all the listed properties.

- $f(0)=1$
- the average rate of change of $f(x)$ on $[-4,0]$ is 1
- $f(x)$ is concave up for $-4<x<0$
- $f(x)$ is invertible (that is, it has an inverse)
- $f(x)$ has a constant rate of change for $0<x<4$

Solution: One possible graph is shown.

