3. [8 points] Jaime is on a long car trip. Consider the following functions:
 - Let \(d(t) \) be the distance, in miles, Jaime has driven \(t \) minutes after they begin their trip.
 - Let \(g(t) \) be the amount of gas, in gallons, in Jaime’s car’s gas tank \(t \) minutes after they begin their trip.

Assume that both functions have inverses. For each part below, write a phrase or sentence giving a practical interpretation of the given expression or equation, or explain why it doesn’t make sense in this context.

a. \(d(9) = 4 \)
 Solution: When Jaime has driven for 9 minutes, they’ve gone 4 miles.

b. \(g(d^{-1}(120)) \)
 Solution: the amount of gas, in gallons, in Jaime’s car’s tank when they’ve driven 120 miles.

c. \(g(60) = g(0) - 2 \)
 Solution: 60 minutes into their trip, Jaime’s car has 2 fewer gallons of gas than when their trip started.

4. [15 points] Mei is starting a coffee roasting business.
 a. [4 points] Mei puts green coffee beans into her roaster. Let \(T(t) \) be the temperature, in degrees Fahrenheit (°F), inside the roaster \(t \) minutes after she starts roasting the beans. Some values of \(T(t) \) are given in the table below.

 \[
 \begin{array}{c|cccc}
 t & 0 & 3 & 5 & 12 \\
 \hline
 T(t) & 70 & 370 & 470 & 320 \\
 \end{array}
 \]

 Compute the average rate of change of \(T(t) \) over the interval \([0, 5]\). Include units.

 Solution: \(\frac{470 - 70}{5 - 0} = \frac{400}{5} = 80 \)

 Answer: 80°F per minute

 Could \(T(t) \) be concave down on the entire interval \([0, 12]\)? Show your work, and circle your final answer.

 Solution: The average rates of change over the three consecutive subintervals are \(\frac{370 - 70}{3 - 0} = 100, \frac{470 - 370}{5 - 3} = 50, \) and \(\frac{320 - 470}{12 - 5} < 0. \) Since these are decreasing, yes, the function could be concave down on this interval.

 Answer (circle one): Yes No

This problem continues onto the following page.