5. [8 points] For each part of this problem, you must show every step of any algebraic work that is required.
a. [3 points] The quadratic function $q(x)$ has its vertex at the point $(2,4)$ and a zero at $x=5$. Find a formula for $q(x)$.

Solution: There are at least two possible solutions:

Using vertex form: we know that $q(x)=a(x-2)^{2}+4$ for some a.
Then plugging in the point $(5,0)$, we find
$0=a(5-2)^{2}+4=9 a+4$, so $a=\frac{-4}{9}$.

Using factored form: we know that, by symmetry, the function must have another zero at $x=-1$. Then we know that $q(x)=a(x-5)(x+1)$ for some a. Then plugging in the point $(2,4)$, we find $4=a(2-5)(2+1)=-9 a$, so $a=\frac{-4}{9}$.
Answer: $q(x)=\underline{\frac{4}{9}(x-2)^{2}+4 \quad \text { or } \quad \frac{4}{9}(x-5)(x+1)}$
b. [5 points] Find a formula for the quadratic function $r(x)$ graphed below.

Solution:

There are at least three possible solutions:
If we first consider the function $p(x)=r(x)+1$ by shifting the given graph up by 1 , we can write

$$
p(x)=a(x+6)(x+2)
$$

Then noting that $(0,6)$ is a point on $p(x)$, we have

$$
6=a(6)(2),
$$

so that $a=\frac{1}{2}$. Then we know

$$
r(x)=p(x)-1=\frac{1}{2}(x+6)(x+2)-1 .
$$

We could also find a formula for $r(x)$ by writing $r(x)=a(x+4)^{2}+k$, since we know by symmetry that the x-coordinate of the vertex is 4 . Then we can plug in $(0,5)$ and one of the other known points to solve a system of two equations for $a=\frac{1}{2}$ and $k=-3$. The formula obtained from this method is $r(x)=\frac{1}{2}(x+4)^{2}-3$.

Or, because we know the y-intercept is 5 , we can write $r(x)=a x^{2}+b x+5$, and proceed similarly to the solution above using the other two points to solve for $a=\frac{1}{2}$ and $b=4$. The formula obtained from this method is $r(x)=\frac{1}{2} x^{2}+4 x+5$.

Answer: $\quad r(x)=\frac{1}{2}(x+6)(x+2)-1$

