6. [17 points] A scientist is studying the mass, in milligrams (mg), of several different bacterial colonies.

- Colony A's mass is 17 mg at the start of the experiment, and it grows at a rate of 7% per hour.
- Colony B's mass in mg t hours after the experiment begins is given by $B(t)=3 e^{0.11 t}$.
- Colony C's mass in mg t hours after the experiment begins is given by $C(t)=22(1.04)^{t}$.
- Two hours into the experiment, Colony D has a mass of 21 mg , but by four hours into the experiment, only 18 mg remains.

For each part of this problem, you must show every step of any algebraic work that is required.
a. [3 points] Find a formula for the function $A(t)$, which gives the mass, in mg, of colony A t hours after the experiment begins.

Answer: $\quad A(t)=\square$
b. [2 points] By what percent is colony B growing each hour? Give your answer in exact form or rounded to at least two decimal places.

Answer: $\quad 100\left(e^{0.11}-1\right) \approx 11.63 \quad \%$
c. [3 points] How many hours will it take for colony B's population to triple?

Give your answer in exact form, and circle your final answer.
Solution:

$$
\begin{aligned}
3 e^{0.11 t} & =9 \\
e^{0.11 t} & =3 \\
0.11 t & =\ln (3) \\
t & =\frac{\ln (3)}{0.11}
\end{aligned}
$$

This problem continues from the previous page and is restated for your convenience.
A scientist is studying the mass, in milligrams (mg), of several different bacterial colonies.

- Colony A's mass is 17 mg at the start of the experiment, and it grows at a rate of 7% per hour.
- Colony B's mass in mg t hours after the experiment begins is given by $B(t)=3 e^{0.11 t}$.
- Colony C's mass in mg t hours after the experiment begins is given by $C(t)=22(1.04)^{t}$.
- Two hours into the experiment, Colony D has a mass of 21 mg , but by four hours into the experiment, only 18 mg remains.

For each part of this problem, you must show every step of any algebraic work that is required.
d. [5 points] At what time t will the size of colonies B and C be the same?

Give your answer in exact form, and circle your final answer.
Solution: There are at least two solutions:
We can take the natural \log of both sides first: We can also rearrange the equation first:

$$
\begin{array}{rlrl}
3 e^{0.11 t} & =22(1.04)^{t} & 3 e^{0.11 t}=22(1.04)^{t} \\
\ln (3)+\ln \left(e^{0.11 t}\right) & =\ln (22)+\ln (1.04)^{t} \\
\ln (3)+0.11 t & =\ln (22)+t \ln (1.04) & \frac{e^{0.11 t}}{(1.04)^{t}}=\frac{22}{3} \\
0.11 t-t \ln (1.04) & =\ln (22)-\ln (3) & \left(\frac{e^{0.11}}{1.04}\right)^{t} & =\frac{22}{3} \\
t(0.11-\ln (1.04)) & =\ln (22)-\ln (3) \\
t & =\frac{\ln (22)-\ln (3)}{0.11-\ln (1.04)} & t \ln \left(\frac{e^{0.11}}{1.04}\right)=\ln \left(\frac{22}{3}\right) \\
& & t & =\frac{\ln \left(\frac{22}{3}\right)}{\ln \left(\frac{e^{0.11}}{1.04}\right)}
\end{array}
$$

e. [4 points] Assuming colony D's mass is decaying exponentially, what will its mass (in mg) be 12 hours after the start of the experiment? Give your answer in exact form.

Solution: We can plug in the points $(2,21)$ and $(4,18)$ into $y=a b^{t}$, giving $21=a b^{2}$ and $18=a b^{4}$.
Dividing, this leads to $\frac{18}{21}=b^{2}$, or $b=\left(\frac{6}{7}\right)^{1 / 2}$.
Then we can solve for a by plugging b into, say, $21=a b^{2}$, which leads to $a=\frac{21}{\frac{6}{7}}=\frac{21 \cdot 7}{6}=24.5$.
Finally, we can find the mass when $t=12$ by using the values we found for a and b along with $t=12$:

$$
24.5\left(\frac{6}{7}\right)^{6}
$$

Alternately, once we have b, we can instead note that the mass after 12 hours will be 18 , the mass at 4 hours, times b^{8}.

Answer:

$$
24.5\left(\frac{6}{7}\right)^{6}
$$

