3. [11 points] The UM Dance Club met up with the UM Math Modeling Club to write formulas for different dancer’s jumps. They measure one dancer’s total time in the air as 1 second and their maximum height as 4 feet. They know that the function $D(t)$ which gives the dancer’s height (in feet) as a function of time after they jump (in seconds) is a quadratic function.

 a. [3 points] One member of the Math Modeling Club wants to find the formula for $D(t)$ using the zeros of the function, so is starting with the form:

 $$D(t) = a(t - r)(t - s)$$

 To model the dancer’s jump described above, what are possible values of r and s and how do you know?

 $$r = \underline{\quad}$$
 $$s = \underline{\quad}$$

 Explanation:

 b. [3 points] Another member of the Math Modeling Club wants to write a formula using vertex form of a quadratic function:

 $$D(t) = a(t - h)^2 + k$$

 To model the dancer’s jump described above, what are the values of h and k in this formula and how do you know?

 $$h = \underline{\quad}$$
 $$k = \underline{\quad}$$

 Explanation:
The UM Dance Club met up with the UM Math Modeling Club to write formulas for different dancer’s jumps. They measure one dancer’s total time in the air as 1 second and their maximum height as 4 feet. They know that the function $D(t)$ which gives the dancer’s height (in feet) as a function of time after they jump (in seconds) is a quadratic function.

c. [3 points] Find the exact value of a in the formulas above. You can use either of your equations to do this. Show all work.

\[a = \text{______________} \]

d. [2 points] From the context of the problem alone—without relying on or referring to your calculation above—would you expect the value of a to be positive or negative? Why?

\[a > 0 \quad a < 0 \quad \text{NOT ENOUGH INFORMATION} \]

Explanation: