3. [11 points] The UM Dance Club met up with the UM Math Modeling Club to write formulas for different dancer's jumps. They measure one dancer's total time in the air as 1 second and their maximum height as 4 feet. They know that the function $D(t)$ which gives the dancer's height (in feet) as a function of time after they jump (in seconds) is a quadratic function.
a. [3 points] One member of the Math Modeling Club wants to find the formula for $D(t)$ using the zeros of the function, so is starting with the form:

$$
D(t)=a(t-r)(t-s)
$$

To model the dancer's jump described above, what are possible values of r and s and how do you know?

$$
\begin{aligned}
& r= \\
& s= \\
&
\end{aligned}
$$

Explanation:

b. [3 points] Another member of the Math Modeling Club wants to write a formula using vertex form of a quadratic function:

$$
D(t)=a(t-h)^{2}+k
$$

To model the dancer's jump described above, what are the values of h and k in this formula and how do you know?

$$
\begin{aligned}
& h= \\
& k= \\
&
\end{aligned}
$$

Explanation:

The UM Dance Club met up with the UM Math Modeling Club to write formulas for different dancer's jumps. They measure one dancer's total time in the air as 1 second and their maximum height as 4 feet. They know that the function $D(t)$ which gives the dancer's height (in feet) as a function of time after they jump (in seconds) is a quadratic function.
c. [3 points] Find the exact value of a in the formulas above. You can use either of your equations to do this. Show all work.

$$
a=
$$

\qquad
d. [2 points] From the context of the problem alone - without relying on or referring to your calculation above - would you expect the value of a to be positive or negative? Why?

$$
a>0 \quad a<0 \quad \text { NOT ENOUGH INFORMATION }
$$

Explanation:

