2. [8 points] The UM Etsy Club is 3D printing a new bracelet design called the Helix Monster. The cost of the materials for one bracelet depends on the inner circumference of that bracelet. The cost of materials $B$ (in dollars) for a Helix Monster bracelet with an inner circumference of $c$ centimeters is given by:

$$
B=h(c)=2+0.4 c
$$

a. [2 points] If the club members want to spend at most $\$ 12$ in materials on a Helix Monster bracelet, what is the largest the bracelet's inner circumference could be? Include units.

## Solution:

$$
\begin{aligned}
12 & =2+0.4 c \\
10 & =0.4 c \\
10 / 0.4 & =c \\
25 & =c
\end{aligned}
$$

$$
c=\frac{12-2}{0.4}=25 \mathrm{~cm}
$$

b. [3 points] Another member creates a Swirling Storm design that has different production costs. The cost ( $B$, in dollars) to produce one Swirling Storm design with inner circumference $c$ is given by

$$
B=s(c)=2.5+0.25 c
$$

For what values of $c$ does the Helix Monster design cost less? For what values of $c$ does the Swirling Storm design cost less? Express your answers using inequalities or interval notation below. Show all work. No explanation needed.
Solution: To find when one bracelet switches from being cheaper to more expensive, we need to find at which value of $c$ the two cost functions intersect.

$$
\begin{aligned}
2+0.4 c & =2.5+0.25 c \\
0.15 c & =0.5 \\
c & =0.5 / 0.15=10 / 3
\end{aligned}
$$

Because the Helix Monster starts out cheaper ( $\$ 2$ vs. $\$ 2.50$ ), we know it will be cheaper for smaller values of $c$. After they intersect, Swirling Storm will be cheaper.

Helix Monster is cheaper when: $\qquad$
Swirling Storm is cheaper when: $\quad c>10 / 3 \mathbf{c m}$
c. [3 points] The club decides to produce a large batch of Swirling Storm bracelets with inner circumference 24 cm . The price to rent the printer for the day is $\$ 120$. Write an expression for the total cost $T$ (in dollars) for producing $n$ Swirling Storm bracelets for inner circumference 24 cm .

Solution: The cost for each Swirling Storm bracelet with an inner circumference of 24 cm is

$$
s(24)=2.5+0.25 \cdot 24=8.5 \text {. }
$$

So the cost to produce $n$ such bracelets, including the cost of the printer rental, will be :

$$
120+8.5 n
$$

$T=$

