3. [11 points] The UM Dance Club met up with the UM Math Modeling Club to write formulas for different dancer's jumps. They measure one dancer's total time in the air as 1 second and their maximum height as 4 feet. They know that the function $D(t)$ which gives the dancer's height (in feet) as a function of time after they jump (in seconds) is a quadratic function.
a. [3 points] One member of the Math Modeling Club wants to find the formula for $D(t)$ using the zeros of the function, so is starting with the form:

$$
D(t)=a(t-r)(t-s)
$$

To model the dancer's jump described above, what are possible values of $r$ and $s$ and how do you know?

$$
\begin{aligned}
& r=\frac{\mathbf{0}}{1} \\
& s=\frac{\mathbf{1}}{}
\end{aligned}
$$

## Explanation:

Solution: The zeros of this function are when the dancer's height is 0 . If the dancer's total time in the air is 1 second, that means that they are on the ground (height 0 ) at $t=0$ seconds and then again 1 second later at $t=1$ second. Since these are the zeros of $D(t)$, they are the values of $r$ and $s$ in the factored form taken as the starting point.
b. [3 points] Another member of the Math Modeling Club wants to write a formula using vertex form of a quadratic function:

$$
D(t)=a(t-h)^{2}+k
$$

To model the dancer's jump described above, what are the values of $h$ and $k$ in this formula and how do you know?

$$
\begin{aligned}
& h=\frac{0.5}{} \\
& k=\frac{4}{4}
\end{aligned}
$$

## Explanation:

Solution: $D(t)$ is given in vertex form this time, so $(h, k)$ is the coordinates of the vertex. Because the zeros are at $t=0,1$, the $t$-value of the vertex must be halway between them, at $t=0.5$. This is why $h=0.5$. We're also told that the dancer's maximum height is 4 ft , so this gives us the vertical coordinate of the vertex, and $k=4$.

The UM Dance Club met up with the UM Math Modeling Club to write formulas for different dancer's jumps. They measure one dancer's total time in the air as 1 second and their maximum height as 4 feet. They know that the function $D(t)$ which gives the dancer's height (in feet) as a function of time after they jump (in seconds) is a quadratic function.
c. [3 points] Find the exact value of $a$ in the formulas above. You can use either of your equations to do this. Show all work.
Solution: We can solve this using either starting point: factored form OR vertex form. For the sake of the solutions, we show both ways. (This is also a way to verify that our work is correct!). For both methods, we'll plug in an additional known point into our starting equations, and then solve for the value of $a$.

Method 1: plug in vertex $(0.5,4)$ into factored form from part (a) and solve for $a$.

$$
\begin{aligned}
& 4=a(0.5-0)(0.5-1)=a(0.5)(-0.5) \\
& 4=a(-0.25) \\
& 4 /-0.25=a \\
&-16=a
\end{aligned}
$$

Method 2: plug in either zero $((0,0)$ or $(1,0))$ into vertex form from part (b) and solve for $a$.

$$
\begin{aligned}
0 & =a(0-0.5)^{2}+4 \\
-4 & =a(-.5)^{2} \\
-4 & =a(0.25) \\
-4 / 0.25 & =a \\
-16 & =a
\end{aligned}
$$

$$
a=\quad-16
$$

d. [2 points] From the context of the problem alone - without relying on or referring to your calculation above - would you expect the value of $a$ to be positive or negative? Why?

$$
a>0 \quad a<0 \quad \text { NOT ENOUGH INFORMATION }
$$

## Explanation:

Solution: Because this dancer reaches a maximum height, this must be a "downward facing" or concave-down parabola. For such a parabola, the leading coefficient, $a$, must be negative.

