4. [11 points] The UM Youtubers Club makes a very cool new video that goes viral. Suppose the video had 100 views at 2:00AM Eastern Time (ET) Saturday morning and the number of views grew exponentially for at least the next 24 hours, with views doubling every hour.
a. [1 point] Between 3:00AM ET and 6:00AM ET Saturday, by what factor had the number of views increased?
Solution: Because the number of views doubles each hours, over three hours it will double three times. In other words, it will increase by a factor of $2^{3}=8$.

Factor of increase: $\quad 2^{3}=8$
b. [2 points] Write a formula for a function $V=f(t)$, where V is the number of video views and t is the number of hours since 2:00AM ET Saturday.

Solution: We know the number of views at 2:00AM is 100, and that it doubles each hour after that. That means the growth factor is $b=2$. Putting this together we get the exponential function $V=f(t)=100 \cdot 2^{t}$.

$$
V=f(t)=\frac{100 \cdot 2^{t}}{}
$$

c. [6 points] For each of the following expressions or equations, explain its meaning in the context of the problem, or explain why it doesn't make sense in the context of the problem.

$$
\text { (i) } f^{-1}(500,000) \approx 12.25
$$

Solution: The time at which the number of views reaches 500,000 is approximately 12.25 hours after 2 AM , or $2: 15 \mathrm{PM}$.
(ii) $\frac{f(5)-f(3)}{5-3}=1200$

Solution: Between 5AM and 7AM, the views increased, on average, by 1200 views per hour.
d. [2 points] Write a new function $g(s)$ in terms of f that would give us the number of views the video had s hours after 9:00AM ET on Saturday morning.
Solution: Graphical perspective: if our new starting point is 9:00AM, this is like shifting our graph so what was previously at $t=7$ is now at $s=0$. So this is, graphically speaking, a shift left by 7 . This means our new formula is $g(s)=f(s+7)$.

Points perspective: If I put $s=0(9 \mathrm{AM})$ into our new function g, this should give the same output as $t=7(9 \mathrm{AM})$ into our original function $f(t)$. This examples shows that we need to add 7 to our s values before putting them into f. This yields the same result as above: $g(s)=f(s+7)$.

$$
g(s)=\xrightarrow{f(s+7)}
$$

