7. [8 points] The following table shows some values of 3 different functions:

x	6	7	9
$f(x)$	27	18	8
$g(x)$	15	20	25
$h(x)$	12	16	24

This blank space is for your work and calculations.

Solution:

Examine function f :

- Average rate of change of f over [6,7]: -9 ; average rate of change of f over [7,9]: $-10 / 2=-5$. These are not the same, so f cannot be linear.
- f is decreasing
- These average rates of change are increasing as we go left to right, so f could be concave up.
- From $x=6$ to $x=7, f(x)$ changes by a factor of $18 / 27=2 / 3$. To see if that same growth factor is in play from $x=7$ to $x=9$, we need to apply it twice.

$$
\frac{2}{3} \cdot \frac{2}{3} \cdot f(7)=\frac{2}{3} \cdot \frac{2}{3} \cdot 18=\frac{2}{3} \cdot 12=8=f(9)
$$

This means the same growth factor holds from $x=7$ to $x=9$, so f could be exponential with growth factor of $2 / 3$.
Examine function g :

- Average rate of change of g over [6,7]: 5; average rate of change of g over $[7,9]: 5 / 2=5 / 2$. These are not the same, so g cannot be linear.
- g is increasing
- These average rates of change are decreasing as we go left to right, so f could be concave down (but not concave up).
- From $x=6$ to $x=7, g(x)$ changes by a factor of $20 / 15=4 / 3$. To see if that same growth factor is in play from $x=7$ to $x=9$, we need to apply it twice.

$$
\frac{4}{3} \cdot \frac{4}{3} \cdot g(7)=\frac{4}{3} \cdot \frac{4}{3} \cdot 20=\frac{4}{3} \cdot \frac{80}{3}=\frac{320}{3} \neq g(9)=25
$$

This means that the $\frac{4}{3}$ growth factor does not continue to hold, so $g(x)$ cannot be exponential.
Examine function h :

- Average rate of change of h over [6, 7]: 4; average rate of change of h over [7,9]: 8/2 $=4$. These are the same, so h could be linear.
- h has a positive slope and is increasing
- Since the average rates of change are constant, they are neither increasing or decreasing, so $h(x)$ can be neither concave down nor concave up.
- Since $h(x)$ has a constant rate of change, it cannot be exponential (since all exponential functions have changing rates of change).
Circle all correct options for each part.
a. [2 points] Which of these functions could be linear?
$f(x) \quad g(x) \quad$ NONE OF THESE
b. [2 points] Which of these functions could be exponential?
$f(x) \quad g(x) \quad h(x) \quad$ NONE OF THESE
c. [2 points] Which of these functions could be concave up on the interval $[6,9]$?
$f(x) \quad g(x) \quad h(x) \quad$ NONE OF THESE
d. [2 points] Which of these functions could be increasing on the interval $[6,9]$?

$$
\begin{array}{llll}
f(x) & g(x) & h(x) \quad \text { NONE OF THESE }
\end{array}
$$

