1. [14 points] No work or explanation is expected on this page.
a. [4 points] If the graph of the function $y=k(w)$ has a vertical asymptote $w=5$ and a horizontal asymptote $y=3$, then what, if any, asymptotes does the graph of $y=2 k(4 w)+3$ have? (Write "None" in the blank if no asymptotes of that type can be found from the information provided.)

Solution: The graph of $y=2 k(4 w)+3$ is obtained from the graph of $y=k(w)$ by first compressing horizontally by a factor of $1 / 4$ then stretching vertically by a factor of 2 , and finally shifting the graph up by 3 units. These transformations send the vertical asymptote $w=5$ to $w=5 / 4$ and the horizontal asymptote $y=3$ to $y=9$.

## Vertical: $w=5 / 4 \quad$ Horizontal: $\quad y=9$

b. [2 points] If the function $f(q)$ has a zero $q=-2$, find a zero of the function $4 f(3(q-1))$.

Solution: The graph of $4 f(3(q-1))$ is obtained from the graph of $f(q)$ by first compressing horizontally by a factor of $1 / 3$ (which sends $q=-2$ to $q=-2 / 3$ ), then shifting right by 1 unit (taking $q=-2 / 3$ to $q=1 / 3$ ) and finally stretching vertically by a factor of 4 (which does not change the horizontal intercepts). Hence, $q=1 / 3$ is a zero of $4 f(3(q-1))$.
An alternate approach: $4 f(3(q-1))=0$ if $f(3(q-1))=0$ so since $f(-2)=0$, the transformed function has a zero when $3(q-1)=-2$. Solving this equation, we find $q=1 / 3$.

Answer: $\quad q=1 / 3$
c. [2 points] Is the function $p(t)=\sin (t)+\pi$ even, odd, or neither? Circle one answer.

Solution: The graph of $y=\sin (t)$ is symmetric about the origin as sine is an odd function. However, the graph of $\sin (t)+\pi$, which is the graph of $\sin (t)$ shifted up $\pi$ units, is not symmetric about the origin. It is also not symmetric about the vertical axis. Therefore the function $\sin (t)+\pi$ is neither even nor odd.

## even odd neither even nor odd

d. [2 points] Is there a number whose natural log is $8,675,309$ ? Circle ONE answer.

Solution: The natural $\log$ of $e^{8,675,309}$ is $8,675,309$. (The range of the natural logarithm function is all real numbers.)
yes no
e. [4 points] Suppose $\cos (\phi)=-0.6$ and $\pi \leq \phi \leq 2 \pi$. Find $\sin (\phi)$ and $\tan (\phi)$.

Solution: By the Pythagorean Identity, $\sin ^{2}(\phi)+\cos ^{2}(\phi)=1$, so $\sin ^{2}(\phi)+(-0.6)^{2}=$ 1. Solving this equation, we find $\sin ^{2}(\phi)=0.64$ so $\sin (\phi)= \pm \sqrt{0.64}= \pm 0.8$. Since $\pi \leq \phi \leq 2 \pi$, the sign of $\sin (\phi)$ is negative. Hence $\sin (\phi)=-0.8$.
By definition, we then have $\tan (\phi)=\frac{\sin (\phi)}{\cos (\phi)}=\frac{-0.8}{-0.6}=\frac{4}{3}$.

Answers: $\sin (\phi)=\square-0.8$
$\tan (\phi)=\frac{4 / 3}{}$

