- **2**. [12 points] For each equation below, solve EXACTLY for the specified variable. Show your work carefully and write your final answer on the answer blank provided.
 - **a**. [4 points] If $5e^{2t+3} = 6$, solve for t.

Solution: Taking the natural log of both sides of the equation, we get $\ln(5e^{2t+3}) = \ln(6)$. Using the properties of \ln , we find $\ln(5) + (2t+3) = \ln(6)$. We can rearrange to get $2t = \ln(6) - \ln(5) - 3$, so that $t = \frac{\ln(6) - \ln(5) - 3}{2}$.

Answer: The exact value of t is $\frac{\ln(6) - \ln(5) - 3}{2}$ or $\frac{\ln(6/5) - 3}{2}$

b. [4 points] If $\ln(3^x) = \ln(2^x) + 7$, solve for x.

Solution: Using the properties of the natural logarithm, this equation can be written $x \ln(3) = x \ln(2) + 7$. Collecting the x terms on one side of the equation, we find that $(\ln(3) - \ln(2))x = 7$, so that $x = \frac{7}{\ln(3) - \ln(2)}$.

Answer: The exact value of x is $\frac{7}{\ln(3) - \ln(2)}$ or $\frac{7}{\ln(3/2)}$

c. [4 points] If $\log (w + 1) - \log (2 - w) = 2$, solve for w.

Solution: Using the properties of log, we can rewrite this equation as $\log\left(\frac{w+1}{2-w}\right) = 2$. By the definition of the logarithm (or raising 10 to the power of both sides), we get $\frac{w+1}{2-w} = 10^2 = 100$. Clearing the denominator, we find w + 1 = 100(2-w). Collecting all of the *w* terms on one side, we get 101w = 199, so $w = \frac{199}{101}$.

	199	
Answer: The exact value of w is	101	