2. [12 points] For each equation below, solve exactly for the specified variable. Show your work carefully and write your final answer on the answer blank provided.
a. [4 points] If $5 e^{2 t+3}=6$, solve for t.

Solution: Taking the natural \log of both sides of the equation, we get $\ln \left(5 e^{2 t+3}\right)=\ln (6)$. Using the properties of \ln, we find $\ln (5)+(2 t+3)=\ln (6)$. We can rearrange to get $2 t=\ln (6)-\ln (5)-3$, so that $t=\frac{\ln (6)-\ln (5)-3}{2}$.

Answer: The exact value of t is $\frac{\frac{\ln (6)-\ln (5)-3}{2} \text { or } \frac{\ln (6 / 5)-3}{2}}{\text {. }}$
b. [4 points] If $\ln \left(3^{x}\right)=\ln \left(2^{x}\right)+7$, solve for x.

Solution: Using the properties of the natural logarithm, this equation can be written $x \ln (3)=x \ln (2)+7$. Collecting the x terms on one side of the equation, we find that $(\ln (3)-\ln (2)) x=7$, so that $x=\frac{7}{\ln (3)-\ln (2)}$.

Answer: The exact value of x is $\frac{7}{\ln (3)-\ln (2)}$ or $\frac{7}{\ln (3 / 2)}$.
c. [4 points] If $\log (w+1)-\log (2-w)=2$, solve for w.

Solution: Using the properties of \log, we can rewrite this equation as $\log \left(\frac{w+1}{2-w}\right)=2$. By the definition of the logarithm (or raising 10 to the power of both sides), we get $\frac{w+1}{2-w}=10^{2}=100$. Clearing the denominator, we find $w+1=100(2-w)$. Collecting all of the w terms on one side, we get $101 w=199$, so $w=\frac{199}{101}$.

Answer: The exact value of w is

