3. [10 points] Below, you are given a table with some data about two functions, $f(x)$ and $g(x)$:

x	0	1	2
$f(x)$	2	-4	3
$g(x)$	0	5	-1

In addition to this table, we are told the following facts:

- $f(x)$ is an even function.
- $g(x)$ is an odd function.
- There is a third function $h(x)$. The graph of $y=h(x)$ is obtained by shifting the graph of $y=f(x)$ one unit to the right.

Use this information to answer the questions below.
a. [2 points] Compute $h(1)$.

Solution: Since the graph of $y=h(x)$ is obtained by shifting the graph of $y=f(x)$ one unit to the right, we have $h(x)=f(x-1)$. So, $h(1)=f(1-1)=f(0)=2$.
Alternatively, shifting the graph of $y=f(x)$ one unit to the right takes the point $(0,2)$ to the point $(1,2)$. So $(1,2)$ is a point on the graph of $y=h(x)$ and thus $h(1)=2$.

Answer: $h(1)=$ \qquad —.
b. [2 points $]$ Compute $f(-1)$.

Solution: We are told $f(x)$ is even, so $f(x)=f(-x)$. Therefore, $f(-1)=f(1)=-4$.
Answer: $f(-1)=-4$
c. [2 points] Compute $g(2)+g(-2)$.

Solution: We are told $g(x)$ is odd, so $g(-x)=-g(x)$. Therefore, $g(-2)=-g(2)=1$, so $g(2)+g(-2)=-1+1=0$.

Answer: $g(2)+g(-2)=$ \qquad
d. [2 points] If $j(x)=f(2 x)+1$, compute the value of $j(1)$.

Solution: We have $j(1)=f(2 \cdot 1)+1=f(2)+1=3+1=4$.
Answer: $j(1)=4$
e. [2 points] If $g(x)=k(-2 x)$, compute the value of $k(-4)$.

Solution: The relationship between $g(x)$ and $k(x)$ shows us that the graph of $y=g(x)$ can be obtained from the graph of $y=k(x)$ by compressing horizontally by a factor of $\frac{1}{2}$ and reflecting across the vertical axis. From this, we can see that $g(2)=k(-4)$. From the table, we know $g(2)=-1$, so $k(-4)=-1$.
Alternatively, since $k(-2 x)=g(x)$, we see that $k(-4)=k(-2 \cdot 2)=g(2)=-1$.
Answer: $k(-4)=-1$.

