4. [13 points] For each problem on this page, show your work step-by-step. (Don't forget to use appropriate units in your answers.)

Ozone is a molecule consisting of three oxygen atoms that is unstable and decays to the stable form of oxygen. The half-life of gaseous ozone at a temperature of $20^{\circ} \mathrm{C}$ is 3 days (72 hours).
a. [4 points] Find the continuous hourly percent decay rate of gaseous ozone at $20^{\circ} \mathrm{C}$.

Give your answer in exact form.
Solution: If the initial amount of gaseous ozone is a and the continuous hourly percent decay rate of gaseous ozone is k, then the amount of ozone after t hours is given by $a e^{k t}$. Since the half-life is given as 72 hours, then after 72 hours, the amount of ozone is $0.5 a$, i.e. we have the equation $0.5 a=a e^{72 k}$. Then $0.5=e^{72 k}$, so, by the definition of \ln (or taking the natural logarithm of both sides) we have $\ln (0.5)=72 k$ so $k=\frac{\ln (0.5)}{72}$.
Note: $\frac{\ln (0.5)}{72} \approx-0.009627$, so it decays at a continuous rate of about 0.9627% per hour.
Answer: $\frac{\ln (0.5)}{72}$
b. [4 points] At a temperature of $20^{\circ} \mathrm{C}$, how long does it take for the amount of gaseous ozone to be reduced by 90% ? Give your answer in exact form.
Solution: The amount of gaseous ozone remaining from an initial quantity a after t hours is $a e^{k t}$ where $k=\ln (0.5) / 72$ (as found in part (a)). When the amount has been reduced by 90%, the amount left is $0.1 a$, so we have $0.1 a=a e^{k t}$. Then $0.1=e^{k t}$ so by the definition of \ln (or taking the natural \log of both sides), we have $\ln (0.1)=k t$ so $t=\ln (0.1) / k$. Using our value of k from part (a), this is $t=\frac{\ln (0.1)}{\ln (0.5) / 72}=\frac{72 \ln (0.1)}{\ln (0.5)}$.
Note: $\frac{72 \ln (0.1)}{\ln (0.5)} \approx 239.1788$, so it takes approximately 239.2 hours for gaseous ozone to be reduced by 90%.
Answer: $\quad \frac{72 \ln (0.1)}{\ln (0.5)}$ hours
When ozone is dissolved in water, it is referred to as "aqueous ozone." At a temperature of $20^{\circ} \mathrm{C}$, aqueous ozone decays at a rate of 12.5% per hour.
c. [5 points] Suppose that in a $20^{\circ} \mathrm{C}$ lab, the amount of aqueous ozone is initially 5 times the amount of gaseous ozone. When will the two amounts be equal?
Give your answer in exact form.
Solution: Let g be the initial amount of gaseous ozone. Then the initial amount of aqueous ozone is $5 g$, and, since its decay rate is 12.5% per hour, the amount of aqueous ozone remaining after t hours is $(5 g)(0.875)^{t}$. From part (a) above, the amount of gaseous ozone remaining after t hours is $g e^{t \ln (0.5) / 72}$. So, we are to find the value of t when these two amounts are equal, i.e. to solve the equation $g e^{t \ln (0.5) / 72}=(5 g)(0.875)^{t}$. Dividing both sides by g gives us $e^{t \ln (0.5) / 72}=(5)(0.875)^{t}$. Taking the natural log of both sides of this equation, we then find $\ln \left(e^{t \ln (0.5) / 72}\right)=\ln \left(5(0.875)^{t}\right)$ so $t \ln (0.5) / 72=\ln (5)+t \ln (0.875)$. Collecting like terms and factoring out t then gives us $t(\ln (0.5) / 72-\ln (0.875))=\ln (5)$ so $t=\frac{\ln (5)}{\ln (0.5) / 72-\ln (0.875)}$. (Note that this is approximately 13 hours.) Answer: $\frac{\ln (5)}{\ln (0.5) / 72-\ln (0.875)}$ hours

