7. [14 points] In music, the pitch of a tone, P, measured in cents, is a function of the tone's frequency, f, measured in hertz. The pitch is defined to be

$$
P=6000+k \ln \left(\frac{f}{f_{0}}\right)
$$

where f_{0} is the frequency of a tone called "middle C ", and k is a constant.
a. [2 points] What is the pitch of "middle C"? (Remember to include units.)

Solution: The frequency of "middle C" is f_{0}, so the pitch of "middle C" is $6000+k \ln \left(\frac{f_{0}}{f_{0}}\right)=6000+k \ln (1)=6000+k(0)=6000$.
Answer: $\quad 6000$ cents
b. [3 points] If the frequency of one tone is two times the frequency of middle C , then the pitch of that tone is 7200 cents. Use this information to find the exact value of k. Then give an approximation of k rounded to the nearest 0.1 .
Solution: If the frequency of a tone is two times the frequency f_{0} of middle C, then its frequency is $2 f_{0}$. So we have $7200=6000+k \ln \left(\frac{2 f_{0}}{f_{0}}\right)=6000+k \ln (2)$. Solving for k we find $1200=k \ln (2)$ so $k=1200 / \ln (2) \approx 1731.2$.

Exact value of $k: \quad \frac{1200}{\ln 2}$
Approximation:
1731.2

Use the approximation of k you found in part (b) to answer the questions below.
(If you were unable to answer part (b), leave your answers below in terms of k.)
c. [4 points] Let P_{1} and P_{2} represent the pitches of tones of frequency f_{1} and f_{2}, respectively. Find a formula for the difference in pitches, $P_{2}-P_{1}$, in terms of the two frequencies f_{1} and f_{2}. Simplify your answer; your formula should not involve f_{0}.

Solution: We have

$$
\begin{aligned}
P_{2}-P_{1} & =\left(6000+k \ln \left(\frac{f_{2}}{f_{0}}\right)\right)-\left(6000+k \ln \left(\frac{f_{1}}{f_{0}}\right)\right)=k \ln \left(\frac{f_{2}}{f_{0}}\right)-k \ln \left(\frac{f_{1}}{f_{0}}\right) \\
& =k\left(\ln \left(\frac{f_{2}}{f_{0}}\right)-\ln \left(\frac{f_{1}}{f_{0}}\right)\right)=k \ln \left(\frac{f_{2} / f_{0}}{f_{1} / f_{0}}\right)=k \ln \left(\frac{f_{2}}{f_{1}}\right)
\end{aligned}
$$

Using our approximation of k from above, we find that $P_{2}-P_{1}$ is approximately $1731.2 \ln \left(\frac{f_{2}}{f_{1}}\right)$.
Answer: $P_{2}-P_{1}=\quad k \ln \left(\frac{f_{2}}{f_{1}}\right) \approx 1731.2 \ln \left(\frac{f_{2}}{f_{1}}\right)$
d. [5 points] The tone called "A above middle C" has a frequency of 440 hertz. Find the frequency of the tone whose pitch is 400 cents higher than the pitch of "A above middle C." (Remember to include units.)

Solution: Let f denote the frequency of the tone whose pitch is 400 cents higher than "A above middle C." Using the solution to part (c), we know that $400=k \ln \left(\frac{f}{440}\right)$. Dividing through by k gives $\ln \left(\frac{f}{440}\right)=400 / k$. Exponentiating both sides gives $\frac{f}{440}=e^{400 / k}$. We then find that $f=440 e^{400 / k} \approx 554.37 \mathrm{~Hz}$.

Answer: About 554.37 Hz

