9. [11 points] For this problem, show your work step-by-step and give all answers in exact form or accurate to at least three decimal places. Include units.

The concentration (in milligrams per milliliter) of a certain experimental medication ("Medication E") in a patient's bloodstream t hours after injection is $C(t)=D e^{-1.5 t}$, where D is the concentration immediately after the injection.
a. [2 points] By what percent does the concentration of Medication E in the bloodstream decrease each hour after injection?

Answer: \qquad
b. [3 points] What is the half-life of Medication E in the bloodstream?

Answer: \qquad

Suppose that a patient is given two injections (Medications A and B) at the same time.

- Medication A has an initial blood concentration of $3 \mathrm{mg} / \mathrm{ml}$, and its concentration decreases at a continuous hourly rate of 25%.
- Medication B has an initial blood concentration of $4.5 \mathrm{mg} / \mathrm{ml}$, and its concentration decreases at a continuous hourly rate of 30%.

Let $A(t)$ and $B(t)$ be the blood concentration (in $\mathrm{mg} / \mathrm{ml}$) of Medication A and of Medication B, respectively, t hours after the patient receives these injections.
c. [2 points] Find a formula for $A(t)$ and a formula for $B(t)$.
$A(t)=$ \qquad

$$
B(t)=
$$

\qquad
d. [4 points] How long after the injections will the concentration of Medication B be only 2% more than the concentration of Medication A in the bloodstream?

Answer:

\qquad

