3. [5 points] A colony of bacteria triples in size every 6 days. What is the doubling time of this colony? (Show your work step-by-step, give your final answer in exact form, and include units.)
Solution: The colony is growing exponentially, so if its initial size is a, then its size after t days is $a b^{t}$ for some constant b. Since the colony triples in size every 6 days, its population when $t=6$ is $3 a$, so $3 a=a b^{6}$. Then $3=b^{6}$ so $b=(3)^{1 / 6}$ and the colony size after t days is $a\left(3^{1 / 6}\right)^{t}=a\left(3^{t / 6}\right)$.
Let d be the doubling time of the colony. Then $2 a=a\left(3^{d / 6}\right)$ so $2=3^{d / 6}$.
Taking the natural logarithm of both sides of this equation and solving for d we find

$$
\begin{aligned}
2 a & =a\left(3^{d / 6}\right) \\
2 & =3^{d / 6} \\
\ln (2) & =\ln \left(3^{d / 6}\right) \\
\ln (2) & =\frac{d}{6} \ln (3) \\
\frac{6 \ln (2)}{\ln (3)} & =d
\end{aligned}
$$

Hence the doubling time of this colony is $\frac{6 \ln (2)}{\ln (3)}$ days. (This is approximately 3.79 days.)
Answer: $\frac{6 \ln (2)}{\ln (3)}$ days
4. [6 points] Let $G(m)$ be the mass (in grams) of the garbage in a dumpster m minutes before 8 am . For each of the functions below, find a formula by applying one or more appropriate transformations to the function G. (In each case, your final answer should be a formula involving G.)
a. [2 points] Let $K(m)$ be the mass (in kilograms) of the garbage in the dumpster m minutes before 8 am .

$$
\text { Answer: } K(m)=\square \quad 0.001 G(m)
$$

b. [2 points] Let $L(h)$ be the mass (in kilograms) of the garbage in the dumpster h hours before 8 am .

Answer: $L(h)=\xrightarrow{0.001 G(60 h)}$.
c. [2 points] Let $T(h)$ be the mass (in kilograms) of the garbage in the dumpster h hours before 11 am .
Solution: Note that $T(3)=L(0)$ (since in both cases this gives the mass in kg at 8 am). More generally, $T(h)=L(h-3)=0.001 G(60(h-3))$.

Answer: $T(h)=\underline{0.001 G(60(h-3)) \text { or } 0.001 G(60 h-180)}$.

