7. [12 points] Solve each of the equations below. Show your work step-by-step and write the solutions in exact form in the answer blanks provided.
a. [3 points] $\quad 5(1.7)^{2 y}=2.4$

Solution: We first divide both sides of the equation by 5 and then use logarithms to find y.

$$
\begin{aligned}
5(1.7)^{2 y} & =2.4 \\
(1.7)^{2 y} & =\frac{2.4}{5}=0.48 \\
\ln \left(1.7^{2 y}\right) & =\ln (0.48) \\
2 y \ln (1.7) & =\ln (0.48) \\
y & =\frac{\ln (0.48)}{2 \ln (1.7)}
\end{aligned}
$$

$$
\text { Answer: } y=\frac{\frac{\ln (0.48)}{2 \ln (1.7)}}{\square}
$$

b. [3 points] $\quad 3 t-1=\log \left(2(10)^{4.6 t}\right)$

Solution: Using properties of logarithms, we see that $\log \left(2(10)^{4.6 t}\right)=\log (2)+\log \left(10^{4.6 t}\right)=$ $\log (2)+4.6 t$, so it remains to solve the equation $3 t-1=\log (2)+4.6 t$. Then we find $-1.6 t=$ $\log (2)+1$ so $t=\frac{\log (2)+1}{-1.6}$

$$
\text { Answer: } t=\frac{\frac{\log (2)+1}{-1.6}}{}
$$

c. [3 points] $\quad e^{\ln (w-4)}=\ln (3.2)-\ln (4)$

Solution: Applying basic properties of the natural logarithm, we see that $e^{\ln (w-4)}=w-4$ and $\ln (3.2)-\ln (4)=\ln \left(\frac{3.2}{4}\right)=\ln (0.8)$. Thus $w-4=\ln (0.8)$ so $w=4+\ln (0.8)$. However, note that we cannot plug this value of w into the original equation (since this would involve $\ln (\ln (0.8))$, which is undefined because $\ln (0.8)<0$). So, if there were a solution, to the equation, it would be $w=4+\ln (0.8)$, but there is actually no solution.

Answer: $w=$ No solution
d. [3 points] $\log (2 p+1)-\log (p-3)=3$

Solution: We apply a basic property of logarithms and then use the definition of the logarithm (or exponentiate).

$$
\begin{aligned}
\log (2 p+1)-\log (p-3) & =3 \\
\log \left(\frac{2 p+1}{p-3}\right) & =3 \\
\frac{2 p+1}{p-3} & =10^{3}=1000 \\
2 p+1 & =1000(p-3)=1000 p-3000 \\
3001 & =998 p \\
\frac{3001}{998} & =p
\end{aligned}
$$

Answer: $p=\longrightarrow \frac{3001}{998}$

