8. [10 points]

The point P (with coordinates (a, b)) is on the unit circle at angle ϕ , as shown in the diagram to the right. Use this information to **find the** values below in terms of a and/or b. NOTE: Your answers should NOT include function names like "sin", "cos", or "tan". You do not need to show your work for this problem.

a. [2 points] Find $\sin(\phi)$.

Solution: $\sin(\phi)$ is the y-coordinate of the point P, so $\sin(\phi) = b$.

Answer:
$$\sin(\phi) = \underline{\qquad b}$$

b. [2 points] Find $\tan(-\phi)$.

Solution: The tangent function is an odd function, so

$$\tan(-\phi) = -\tan(\phi) = -\frac{\sin(\phi)}{\cos(\phi)} = -\frac{b}{a}$$

Answer:
$$\tan(-\phi) = \underline{\qquad -\frac{b}{a}}$$

c. [2 points] Find $\cos(\phi + \pi)$.

Solution: $\cos(\phi + \pi)$ is the *x*-coordinate of the point halfway around the circle from P, so $\cos(\phi + \pi) = -a$. (Alternatively, note that the graph of $\cos(\phi + \pi)$ is the graph of $\cos(\phi + \pi)$ shifted left π units. This is the same as the graph of $-\cos(\phi)$, so $\cos(\phi + \pi) = -\cos(\phi) = -a$.)

Answer: $\cos(\phi + \pi) = \underline{-a}$

d. [2 points] Find $\sin(\phi - \frac{\pi}{2})$.

Solution: The graph of $\sin(\phi - \frac{\pi}{2})$ results from shifting the graph of $\sin(\phi)$ to the right $\pi/2$ units. This is the same as the graph of $-\cos(\phi)$, so $\sin(\phi - \frac{\pi}{2}) = -\cos(\phi) = -a$. (Alternatively, note that the point at angle $\phi - \pi/2$ has y-coordinate equal to the opposite of the x-coordinate of the point P.)

Answer:
$$\sin(\phi - \frac{\pi}{2}) = -a$$

e. [2 points] Find the coordinates of the point at angle ϕ on the circle of radius 7 centered at the point (-3, 2).

Solution: The point at angle ϕ on the circle of radius 7 centered at the origin is (7a, 7b), so the point at angle ϕ on the circle of radius 7 centered at the point (-3, 2) is (7a - 3, 7b + 2).

Answer: (7a - 3, 7b + 2)