8. [10 points]

The point P (with coordinates (a, b)) is on the unit circle at angle ϕ, as shown in the diagram to the right. Use this information to find the values below in terms of a and/or b.
Note: Your answers should not include function names like "sin", "cos", or "tan".
You do not need to show your work for this
 problem.
a. [2 points] Find $\sin (\phi)$.

Solution: $\sin (\phi)$ is the y-coordinate of the point P, so $\sin (\phi)=b$.

$$
\text { Answer: } \sin (\phi)=
$$

\qquad
b. [2 points] Find $\tan (-\phi)$.

Solution: The tangent function is an odd function, so

$$
\tan (-\phi)=-\tan (\phi)=-\frac{\sin (\phi)}{\cos (\phi)}=-\frac{b}{a} .
$$

Answer: $\tan (-\phi)=\xrightarrow{-\frac{b}{a}}$
c. [2 points] Find $\cos (\phi+\pi)$.

Solution: $\cos (\phi+\pi)$ is the x-coordinate of the point halfway around the circle from P, so $\cos (\phi+\pi)=--a$. (Alternatively, note that the graph of $\cos (\phi+\pi)$ is the graph of $\cos (\phi+\pi)$ shifted left π units. This is the same as the graph of $-\cos (\phi)$, so $\cos (\phi+\pi)=-\cos (\phi)=-a$.)

Answer: $\cos (\phi+\pi)=$ \qquad
d. [2 points] Find $\sin \left(\phi-\frac{\pi}{2}\right)$.

Solution: The graph of $\sin \left(\phi-\frac{\pi}{2}\right)$ results from shifting the graph of $\sin (\phi)$ to the right $\pi / 2$ units. This is the same as the graph of $-\cos (\phi)$, so $\sin \left(\phi-\frac{\pi}{2}\right)=-\cos (\phi)=-a$. (Alternatively, note that the point at angle $\phi-\pi / 2$ has y-coordinate equal to the opposite of the x-coordinate of the point P.)

Answer: $\sin \left(\phi-\frac{\pi}{2}\right)=$ \qquad
e. [2 points] Find the coordinates of the point at angle ϕ on the circle of radius 7 centered at the point $(-3,2)$.
Solution: The point at angle ϕ on the circle of radius 7 centered at the origin is $(7 a, 7 b)$, so the point at angle ϕ on the circle of radius 7 centered at the point $(-3,2)$ is $(7 a-3,7 b+2)$.

Answer: \qquad

