9. [11 points] For this problem, show your work step-by-step and give all answers in exact form or accurate to at least three decimal places. Include units.

The concentration (in milligrams per milliliter) of a certain experimental medication ("Medication E") in a patient's bloodstream t hours after injection is $C(t)=D e^{-1.5 t}$, where D is the concentration immediately after the injection.
a. [2 points] By what percent does the concentration of Medication E in the bloodstream decrease each hour after injection?
Solution: The hourly decay factor is $e^{-1.5} \approx 0.22313$, so the concentration of Medication E decreases by a factor of $1-e^{-1.5} \approx 0.77687$ or about 77.687% per hour.

Answer: About 77.687\%
b. [3 points] What is the half-life of Medication E in the bloodstream?

Solution: Suppose h is the half-life of Medication E in the bloodstream. Then $C(h)=\frac{1}{2} D$ so $D e^{-1.5 h}=\frac{1}{2} D$ and $e^{-1.5 h}=\frac{1}{2}$. Hence $-1.5 h=\ln (1 / 2)$ so $h=\frac{\ln (1 / 2)}{-1.5} \approx 0.462$. Therefore, the half-life is approximately 0.462 hours.

Suppose that a patient is given two injections (Medications A and B) at the same time.

- Medication A has an initial blood concentration of $3 \mathrm{mg} / \mathrm{ml}$, and its concentration decreases at a continuous hourly rate of 25%.
- Medication B has an initial blood concentration of $4.5 \mathrm{mg} / \mathrm{ml}$, and its concentration decreases at a continuous hourly rate of 30%.
Let $A(t)$ and $B(t)$ be the blood concentration (in $\mathrm{mg} / \mathrm{ml}$) of Medication A and of Medication B, respectively, t hours after the patient receives these injections.
c. [2 points] Find a formula for $A(t)$ and a formula for $B(t)$.
$A(t)=\frac{3 e^{-0.25 t}}{} \quad B(t)=\frac{4.5 e^{-0.3 t}}{}$
d. [4 points] How long after the injections will the concentration of Medication B be only 2% more than the concentration of Medication A in the bloodstream?
Solution: The concentration of Medication B is 2% more than the concentration of Medication A when $B(t)=1.02 A(t)$, so we solve for t in this equation.

$$
\begin{aligned}
B(t) & =1.02 A(t) \\
4.5 e^{-0.3 t} & =1.02\left(3 e^{-0.25 t}\right)=3.06 e^{-0.25 t} \\
\ln \left(4.5 e^{-0.3 t}\right) & =\ln \left(3.06 e^{-0.25 t}\right) \\
\ln (4.5)+\ln \left(e^{-0.3 t}\right) & =\ln (3.06)+\ln \left(e^{-0.25 t}\right) \\
\ln (4.5)-0.3 t & =\ln (3.06)-0.25 t \\
\ln (4.5)-\ln (3.06) & =0.05 t \quad \text { so } \quad t=\frac{\ln (4.5)-\ln (3.6)}{0.05}=\frac{\ln (4.5 / 3.06)}{0.05} \approx 7.713 .
\end{aligned}
$$

Hence the concentration of Medication B is 2% more than the concentration of Medication A $\frac{\ln (4.5 / 3.06)}{0.05}$ or about 7.713 hours after the injections.

