3. [12 points] Cleaver the beaver is building a large dam to protect against predators. After 4 hours of working, the dam he is building is 24 cm high. After 16 hours of working, the dam he is building is 180 cm high. Let $C(t)$ be the height of Cleaver's beaver dam, in cm , after he has been working for t hours. Assume that $C(t)$ is exponential.
a. [4 points] Find a formula for $C(t)$. You must find your answer algebraically. All numbers in your formula should be in exact form.

Solution: Since $C(t)$ is exponential, there are constants a and b so that $C(t)=a b^{t}$. We also have that $C(4)=24$ and $C(16)=180$. So, we have $24=a b^{4}$ and $180=a b^{16}$. Taking ratios, we find $\frac{180}{24}=\frac{a b^{16}}{a b^{4}} \quad$ so $\quad b^{12}=7.5 \quad$ and $\quad b=(7.5)^{1 / 12}$. We use the equation $a b^{4}=24$ to find the value for a and see that $\left.a(7.5)^{1 / 12}\right)^{4}=24 \quad$ so $\quad a=24(7.5)^{-1 / 3}$. Thus, $C(t)=24(7.5)^{-1 / 3}(7.5)^{t / 12}=24(7.5)^{(t-4) / 12}$.

Answer: $\quad C(t)=24(7.5)^{-1 / 3}(7.5)^{t / 12}=24(7.5)^{(t-4) / 12}$
b. [1 point] Find the continuous hourly growth rate of the height of Cleaver's dam. Round your answer to the nearest 0.01%.
Solution: To find the continuous hourly growth rate, we solve the equation $e^{k}=b$ for k. We have $e^{k}=(7.5)^{1 / 12}$ so $k=\frac{1}{12} \ln (7.5)=\frac{\ln 7.5}{12} \approx 16.79 \%$.

Answer: 16.79%
Cleaver's neighbors, Anne and Barry, are also each building a dam, and they start working at the same time. Let $A(t)$ be the height, in cm, of Anne's dam t hours after she starts working on it, and let $B(t)$ be the height, in cm, of Barry's dam t hours after he starts working on it.
c. [2 points] Write an equation that expresses the following sentence:
"After they have been working for h hours, Anne's dam is 35% taller than Barry's dam."
Note: Your equation may involve A, B, and h.
Solution: If Anne's dam is 35% is taller than Barry's dam after working for h hours, then $A(h)=1.35 B(h)$.

Answer: $A(h)=1.35 B(h)$

- Anne's dam starts off 5 cm high, and she builds at a continuous hourly rate of 22%.
- Barry's dam starts off 12 cm high, and he builds at a constant rate of 4 cm per hour.
d. [2 points] Use the information above to find formulas for $A(t)$ and $B(t)$.

Solution: If Anne builds at a continuous hourly rate of 22% and her dam starts at 5 cm high, then $A(t)=5 e^{0.22 t}$. If Barry builds at a constant rate of 4 cm per hour and his dam starts at 12 cm high, then $B(t)=12+4 t$.
Answers: $A(t)=5 e^{0.22 t} \quad$ and $\quad B(t)=\longrightarrow 12+4 t$
e. [3 points] When will Anne's dam be 35% taller than Barry's dam?

Round your answer to the nearest 0.01 hour. Clearly indicate how you found your solution. (Remember item 7 from the instructions on the front page.)
Solution: We want to solve $A(t)=1.35 B(t)$. We graph the functions $A(t)$ and $1.35 B(t)$, and using the intersection feature of the calculator, we find that $t \approx-2.46$ or 12.93. Because Anne and Barry started building at time $t=0$, only the positive solution makes sense in the context of this problem. Therefore, Anne's dam is 35% taller than Barry's dam approximately 12.93 hours after they started to build their dams.

Answer: About 12.93 hours after starting to build

