6. [11 points] For each equation below, solve exactly for the specified variable. Show your work step-by-step and write your answers in exact form in the answer blanks provided.
a. [4 points] $12.1 e^{0.15 p}=0.78(0.9)^{p}$

Solution: We take the natural logarithm of both sides of the equation and then apply basic logarithm properties to solve for p.
(Take the natural logarithm of both sides.) $\ln \left(12.1 e^{0.15 p}\right)=\ln \left(0.78(0.9)^{p}\right)$
(Apply basic properties of logarithms.) $\ln (12.1)+\ln \left(e^{0.15 p}\right)=\ln (0.78)+\ln \left(0.9^{p}\right)$
(Use additional log properties.) $\quad \ln (12.1)+0.15 p=\ln (0.78)+p \ln (0.9)$
(Isolate p on one side of the equation.) $\quad 0.15 p-p \ln (0.9)=\ln (0.78)-\ln (12.1)$
(Factor out $p.) \quad p(0.15-\ln (0.9))=\ln (0.78)-\ln (12.1)$
(Divide to solve for p.)

$$
p=\frac{\ln (0.78)-\ln (12.1)}{0.15-\ln (0.9)}
$$

$$
\text { Answer: } p=\frac{\frac{\ln (0.78)-\ln (12.1)}{0.15-\ln (0.9)}=\frac{\ln (0.78 / 12.1)}{0.15-\ln (0.9)}}{\text { and }}
$$

b. [4 points] $\frac{\ln \left(z^{7}\right)-\ln \left(z^{4}\right)}{\ln (50)}=5$

Solution:

(Multiply both sides of the equation by $\ln (50)$.) $\ln \left(z^{7}\right)-\ln \left(z^{4}\right)=5 \ln (50)$

$$
\begin{array}{rlrl}
\text { (Use a basic property of logarithms.) } & \ln \left(\frac{z^{7}}{z^{4}}\right) & =5 \ln (50) \\
\text { (Simplify.) } & & \ln \left(z^{3}\right) & =5 \ln (50)
\end{array}
$$

(Use the definition of \ln (or exponentiate).)

$$
\begin{aligned}
z^{3} & =e^{5 \ln (50)}=\left(e^{\ln (50}\right)^{5}=50^{5} \\
z & =50^{5 / 3}
\end{aligned}
$$

(Solve for z.)
Note: One alternate approach is to simplify the left side of the equation as follows: $\ln \left(z^{7}\right)-\ln \left(z^{3}\right)=7 \ln (z)-4 \ln (z)=3 \ln (z)$. Then $\ln (z)=\frac{5 \ln (50)}{3}$ and $z=e^{\frac{5 \ln (50)}{3}}=50^{5 / 3}$.

c. [3 points] $\ln \left(10 e^{-5 n}\right)=3 n+2$

Solution: Using basic properties of logarithms, we can first simplify the left side of the equation as follows:

$$
\ln \left(10 e^{-5 n}\right)=\ln (10)+\ln \left(e^{-5 n}\right)=\ln (10)-5 n .
$$

Then we can solve for n.

$$
\begin{aligned}
\ln (10)-5 n & =3 n+2 \\
\ln (10)-2 & =3 n+5 n=8 n \\
\frac{\ln (10)-2}{8} & =n
\end{aligned}
$$

Answer: $n=\frac{\frac{\ln (10)-2}{8}}{\text { Fall, 2013 Math } 105 \text { Exam } 2 \text { Problem } 6 \text { Solution }}$

