7. [12 points] Last winter, Mollie Mole kept very careful records of her dwindling supply of earthworms. She had 450 grams of earthworms at the beginning of the winter, and 23.5% of her earthworm supply was eaten during the first 10 days of winter.
For this problem, you must find your answers algebraically and show each step carefully.
a. [2 points] Do not round your answers.

How many grams of earthworms did Mollie eat during the first 10 days of last winter?
Solution: If she ate 23.5% of her earthworm supply of 450 grams during the first 10 days of last winter, she ate $0.235(450)=105.75$ grams.

Answer:
105.75 grams

How many grams of earthworms were left in Mollie's supply after the first 10 days of last winter?
Solution: She had $450-105.75=344.25$ grams of earthworms left after the first 10 days of last winter.

Answer:
344.25 grams

Let $W(d)$ be the number of grams of earthworms in Mollie's supply d days after the start of last winter.
b. [4 points] Assuming that Mollie's supply of earthworms decreased exponentially during the first 10 days of last winter, find a formula (in exact form) for $W(d)$ for $0 \leq d \leq 10$.

Solution: Since $W(d)$ is exponential and $W(0)=450$, there is a constant b so that $W(d)=450 b^{d}$. We know that $W(10)=(1-0.235) 450=0.765(450)$, so $0.765(450)=450 b^{10}$. Thus $b^{10}=0.765$ and $b=0.765^{1 / 10}=0.765^{0.1}$.

Answer: $W(d)=4 \begin{array}{lll}450(0.765)^{d / 10} & \text { or } \quad 450 \cdot 0.765^{0.1 d}\end{array}$
c. [1 point] According to your formula above, by what percent did Mollie's supply of earthworms decrease each day during the first 10 days of last winter?
Solution: The daily change of her supply is $b-1=0.765^{0.1}-1 \approx-0.0264=-2.64 \%$, so her supply decreased each day by $1-0.765^{0.1} \approx 0.0264=2.64 \%$.

$$
\text { Answer: } \quad 1-0.765^{0.1} \approx 2.64 \%
$$

d. [5 points] After the first 10 days, for the rest of last winter, Mollie's remaining supply of earthworms decreased by 6.5% each day. How many total days of winter had passed when her supply dropped below 5 grams? Remember to find your answer algebraically, showing each step carefully. Then round to the nearest day.

Solution: At day 10, she has 344.25 grams. If her supply decreases 6.5% each day, then t days after the first 10 days, she has $344.25(0.935)^{t}$ grams. We solve for t in the equation $344.25(0.935)^{t}=5$. We have $0.935^{t}=\frac{5}{344.25}$, so $\ln \left(0.935^{t}\right)=\ln \left(\frac{5}{344.25}\right)$. Thus

$$
t \ln (0.935)=\ln (5)-\ln (344.25) \quad \text { and therefore } \quad t=\frac{\ln (5)-\ln (344.25)}{\ln (0.935)} .
$$

So, her supply drops below 5 grams after $10+\frac{\ln (5)-\ln (344.25)}{\ln (0.935)}$ or about 73 days of winter. Note: Alternatively, we note that for $d>10$, a formula for $W(d)$ is given by $W(d)=344.25(0.935)^{d-10}$. We can then solve for d in $344.25(0.935)^{d-10}=5$.

Answer:

