8. [12 points] Note that you do not have to show work on this problem. However, any work or reasoning you do show may be considered for partial credit.
a. [4 points] Suppose h is an odd function and that $(12,-8)$ is a point on the graph of $y=h(t)$. Find the coordinates of two points that must be on the graph of $y=-3 h(t+7)$.
Solution: Since $h(t)$ is odd and $(12,-8)$ is a point on the graph of $h(t)$, the point $(-12,8)$ is also on the graph of $h(t)$. We obtain the graph of $-3 h(t+7)$ from the graph of $h(t)$ by first stretching vertically by a factor of 3 , then reflecting across the horizontal axis, and finally shifting left 7 units. This takes the points $(12,-8)$ and $(-12,8)$ to the points $(5,24)$ and $(-19,-24)$, respectively.
Answers: \qquad and
$(-19,-24)$
b. [4 points] Suppose the graph of $y=k(x)$ has $y=4$ as its only horizontal asymptote and $x=-2$ as its only vertical asymptote. If $g(x)=k(-3 x)+11$, what are the equations of the horizontal and vertical asymptotes of the graph of $y=g(x)$?
Solution: The graph of $k(-3 x)+11$ is obtained from the graph of $k(x)$ by compressing horizontally by a factor of $1 / 3$, then reflecting across the vertical axis, and finally shifting up 11 units. These transformations take the horizontal asymptote $y=4$ to $y=15$ and the vertical asymptote $x=-2$ to $x=2 / 3$.
horizontal asymptote: $\quad y=15 \quad$ vertical asymptote: $\quad x=\frac{2}{3}$
c. [4 points] Suppose the domain of $f(x)$ is the interval $[-4, \infty)$. Find the domain of the function p defined by $p(x)=5-f(-2 x+1)$.
Solution: The only transformations involved in obtaining the graph of $y=p(x)$ from the graph of $y-f(x)$ that affect the domain of the function are the horizontal transformations. Because $p(x)=5-f(-2 x+1)=5-f\left(-2\left(x-\frac{1}{2}\right)\right)$, the horizontal transformations involved are, in order, a horizontal compression by a factor of $1 / 2$ towards the vertical axis (changing the domain from $[-4, \infty)$ to $[-2, \infty)$), a reflection across the vertical axis (changing the domain from $[-2, \infty)$ to $(-\infty, 2]$), and, finally, a shift to the right by $1 / 2$ unit (taking the domain to ($\left.-\infty, \frac{5}{2}\right]$).

Answer: $\quad\left(-\infty, \frac{5}{2}\right]$
9. [5 points] An exponentially growing population of mice triples in size every 120 days. How long does it take this population to increase by 400% ?
(Show your work step-by-step, and give your answer in exact form.)
Solution: Let P_{0} be the initial population of mice, and let $P(t)$ be the population of the mice after t days. Then, since the population is growing exponentially there is a growth factor b so that $P(t)=P_{0} b^{t}$. Since the population triples every 120 days, we know that $P(120)=3 P_{0}$ so $3 P_{0}=P_{0} b^{120}$. Hence $3=b^{120}$ and $b=3^{1 / 120}$. Because we want to find how long it takes for the population to increase by 400%, we want to find the value of t when $P(t)=5 P_{0}$, i.e. when $5 P_{0}=P_{0}\left(3^{1 / 120}\right)^{t}$. We solve for t.

$$
5 P_{0}=P_{0} 3^{t / 120} \quad \text { so } \quad 5=3^{t / 120} \quad \text { and } \quad \ln (5)=\ln \left(3^{t / 120}\right)=\frac{t}{120} \ln (3)
$$

Thus it takes $t=\frac{120 \ln (5)}{\ln (3)}$ days for the population to increase by 400%.
Answer: $\frac{120 \ln (5)}{\ln (3)}$ days

