- 4. [8 points] Let h(t) be the height (in meters) of a roller coaster carriage above the ground during a roller coaster ride, t seconds after the ride starts.
 - a. [2 points] Let g(t) be the height (in **feet**) of the roller coaster carriage above the ground during a roller coaster ride, t seconds after the ride starts. Write a formula for the function g in terms of the function h and the variable t. (1 meter= 3.28 feet)

g((+)	۱ —		
41	U,) —		

b. [3 points] The roller coaster carriage reaches its highest point *p* seconds after the ride starts. Write an equation that expresses the following fact:

Three seconds after the the roller coaster carriage reaches its highest point, its height (in meters) above the ground is twice its height at the starting point.

E_0	uation:			
	accordin.			

- **c.** [3 points] During a renovation of the amusement park, the following modifications are made to the roller coaster, in the stated order.
 - 1. The starting point of the roller coaster is moved to where the roller coaster carriage would have been 30 seconds into the ride from the old starting point.
 - 2. The entire roller coaster is raised onto a 2 meter high platform.

After the renovation, let k(t) be the height (in **meters**) of the roller coaster carriage above the ground during a roller coaster ride, t seconds after the ride starts. Write a formula for the function k in terms of the function h and the variable t.

k	(t))=