7. [8 points] The pendulum drawn below is a sphere that is hung from the ceiling by a piece of string that is 2.5 meters long. The ceiling is 3 meters above the floor, and the pendulum is swinging in between the points A and B as shown in the picture below.

Let \(H = h(t) \) be the distance (in meters) between the center of the pendulum and the ground at time \(t \) (in seconds). Suppose that the function \(h \) is periodic, and that the midline of \(h \) is the line \(H = 1 \).

a. [2 points] If it takes two seconds for the pendulum to move from A to B (and also from to B to A), what is the period of the function \(h \)?

\[\text{Solution: } \text{Period of } h = 2 \text{ seconds.} \]

b. [2 points] What is the minimum value of the function \(h \)?

\[\text{Solution: } \text{Minimum value of } h = 3 - 2.5 = 0.5 \text{ m.} \]

c. [2 points] What is the amplitude of \(h \)?

\[\text{Solution: } \text{Amplitude of } h = 1 - 0.5 = 0.5 \text{ m.} \]

d. [2 points] What is the maximum value of the function \(h \)?

\[\text{Solution: } \text{Maximum value of } h = 1 + 0.5 = 1.5 \text{ m.} \]