3. [8 points] Let $S(t)$ be the amount of shrimp (in thousands) living in a lake t years after January 1, 2000, where

$$
S(t)=3.27(1.3)^{t}
$$

a. [3 points] In how many years, after January 1, 2000, will the number of shrimps in the lake have increased by 75% ? Your answer must be exact or accurate up to the first two decimals.

Solution:

$$
\begin{aligned}
3.27(1.3)^{t} & =1.75(3.27) \\
(1.3)^{t} & =1.75 \\
t \ln (1.3) & =\ln (1.75) \\
t & =\frac{\ln (1.75)}{\ln (1.3)}
\end{aligned}
$$

b. [2 points] What is the continuous growth rate per year of the population of shrimps? Your answer must be exact or accurate up to the first two decimals.

Solution: $\quad k=\ln (1.3)$
c. [3 points] Let $f(p)$ be the amount of shrimps, in thousands, p months after January 1 , 2000. What is the growth factor of the function $f(p)$? Your answer must be in exact form.

Solution: $\quad f(p)=S\left(\frac{p}{12}\right)=3.27(1.3)^{\frac{p}{12}}$. Growth factor of $f(p)$ is $b=(1.3)^{\frac{1}{12}}$.

