4. [11 points] The comets A and B each orbit the sun in an ellipse, as illustrated in the diagram below. Let $A(t)$ be the distance (in millions of miles) between comet A and the sun and $B(t)$ the distance (in millions of miles) between comet B and the sun t years after June 12, 2013.

It takes 7 years for comet A to complete a full orbit (i.e. return to its initial position), and 20 years for comet B to do the same. The functions $A(t)$ and $B(t)$ have been graphed for the time it takes the comets to travel through a complete orbit and return to their starting positions.

Note that the graphs are not drawn to the same scale. You do not need to show any work for this problem.
a. [2 points] What is the period of the function $A(t)$? Write your answer in the space provided.

The period of $A(t)$ is \qquad
b. [2 points] What is the period of the function $B(t)$? Write your answer in the space provided.

The period of $B(t)$ is \qquad
c. [3 points] The closest that comet A gets to the sun is 1.75 million miles, and the function $A(t)$ has midline $y=4.25$. What is the furthest that comet A gets from the sun? Write your answer in the space provided, and include units.

The furthest that comet A gets is \qquad .
d. [4 points] Comet C (not shown above) also orbits the sun in an ellipse. Let $C(t)$ be the distance (in millions of miles) from comet C to the sun t years after June 12, 2013.
The function $C(t)$ is periodic with period 4. Between $t=0$ and $t=4$, comet C is the closest to the sun at time $t=3$. Which of the following must be true? Circle your answer(s) from the options listed; if none of the options are correct, circle none of these.
$C(27)=C(32)$
$C(28)=C(32)$
$C(3)>C(4)$
$C(11) \leq C(2)$
$C(t)$ is the largest at $t=1$
none of these

