- 1. [20 points] You do not need to show any work for this problem, but you should write your answers in the spaces provided.
 - **a**. [2 points] Let j(x) be an odd function with domain $(-\infty, \infty)$ and j(-1) = 4. Evaluate j(0) and j(1).

$$j(0) =$$
_____, and $j(1) =$ _____

- **b.** [2 points] Let $f(x) = \log x$. Write down an expression for a function g(x) which is a transformation of f(x) that has a vertical asymptote at x = -2.
 - $g(x) = \frac{\log(x+2)}{\log(x+2)}$
- c. [3 points] Let $f(x) = \log x$ and $h(x) = \log(0.5x)$. By how much, and in which direction, must the graph of y = f(x) be shifted *vertically* to obtain the graph of y = h(x)? Your answer must be **exact**.

The graph of y = f(x) must be shifted vertically <u>down</u> by <u> $-\log(0.5)$ </u>

- **d**. [4 points] Let $k(x) = b \sin(x) 10$ (for some constant b) be a periodic function with amplitude 4. List *all* possible values of b, and find the equation of the midline of y = k(x).
 - The midline is y = -10, and b could be 4 or -4
- e. [3 points] Consider the graph of $y = \tan(x + 1)$. Write down the equations of *one* horizontal asymptote and *one* vertical asymptote of this graph, or write NONE if there are no asymptotes of a particular type. Your answer must be **exact**.

A vertical asymptote is <u> $x = 0.5\pi - 1$ </u>, and a horizontal asymptote is <u>NONE</u>

f. [6 points] Let R(x) = 2L(7x - 3) + 4. List the transformations you need to apply to the graph of y = L(x), in order, to obtain the graph of y = R(x). Fill each space with either a number or one of the phrases below, as appropriate.

SHIFT IT	SHIFT IT	SHIFT IT	SHIFT IT
HORIZONTALLY	HORIZONTALLY	VERTICALLY	VERTICALLY
TO THE RIGHT	TO THE LEFT	UPWARDS	DOWNWARDS
COMPRESS IT	STRETCH IT	COMPRESS IT	STRETCH IT
HORIZONTALLY	HORIZONTALLY	VERTICALLY	VERTICALLY

To get the graph of y = R(x), we start with the graph of y = L(x).

<i>First</i> , we	COMPRESS IT HORIZONTALLY	by	1/7	,
and then we	SHIFT IT HORIZONTALLY TO THE RIGHT	by	3/7	,
and then we	STRETCH IT VERTICALLY	by	2	,
and then we	SHIFT IT VERTICALLY UPWARDS	<i>by</i>	4	