7. [11 points] In each of the following parts, you are given an equation in which you must solve for x. Your answers must be exact and should be obtained algebraically. You should show all your work, step-by-step, and write your final answers in the spaces provided.
a. $[3$ points $] \ln \left(3 x^{7}+5\right)=-2$

Solution: We exponentiate both sides and solve for x, which gives us:

$$
\begin{aligned}
3 x^{7}+5 & =e^{-2} \\
3 x^{7} & =e^{-2}-5 \\
x^{7} & =\frac{1}{3}\left(e^{-2}-5\right) \\
x & =\sqrt[7]{\frac{1}{3}\left(e^{-2}-5\right)}
\end{aligned}
$$

$$
x=
$$

b. [4 points] $e^{7 x}=5 e^{10 x}$

Solution: We take the natural logarithm of both sides and use properties of the logarithm to simplify, which gives us:

$$
\begin{aligned}
\ln \left(e^{7 x}\right) & =\ln \left(5 e^{10 x}\right) \\
7 x & =(\ln 5)+10 x \\
-3 x & =\ln 5 \\
x & =-\frac{1}{3} \ln 5
\end{aligned}
$$

$$
x=-\quad-\frac{\ln 5}{3}
$$

c. [4 points] $4(\log (a x))^{3}+8=0$, where $a>0$ is a constant. Your answer for this part may involve a.

Solution: We'll first isolate the $(\log (a x))^{3}$ on one side, then take a cube root and exponentiate to solve for x :

$$
\begin{aligned}
(\log (a x))^{3} & =-2 \\
\log (a x) & =\sqrt[3]{-2} \\
a x & =10^{\sqrt[3]{-2}} \\
x & =\frac{1}{a} 10^{\sqrt[3]{-2}}
\end{aligned}
$$

$$
x=\quad \frac{1}{a} 10^{\sqrt[3]{-2}}
$$

