7. [17 points] The function $k(w)$ has domain $(-\infty, 3 \pi$]. The graph of $k(w)$ for $-10 \leq w \leq 3 \pi$ is shown in the picture below:

Assume that the behavior of the graph for w in $(-\infty,-10)$ continues as shown. Moreover, the following are true for the function $k(w)$:

- $\lim _{w \rightarrow-6^{+}} k(w)=+\infty$
- $k(w)$ has a horizontal asymptote $y=-4$.
- $k(w)=A \cos (w)+c$, for $-\pi / 2 \leq w \leq 3 \pi$.
a. [4 points] Find the values of A and c.
b. [9 points] Fill in the blanks in the following sentences. You can use either interval notation or inequalities, wherever it is needed:
i. The domain of the function $k\left(-\frac{1}{4}(w-4)\right)$ is \qquad .
ii. $\lim _{w \rightarrow+\infty}-3 k(-w)+1=$ \qquad .
iii. The vertical asymptote of the graph of $k(2018 w+2019)$ is \qquad .
c. [4 points] Let $g(w)=-k(5 w)-1.5$. Find the coordinates of the point on the graph of k that correspond to the point $\left(\frac{2 \pi}{5},-3.5\right)$ on the graph of g.
\qquad , \qquad).

