2. [12 points] A table for the function $f(x)$ and part of the graph of the piecewise-linear function $g(x)$ are given below. The following are true:

- $f(x)$ and $g(x)$ are both defined on $(-\infty,+\infty)$.
- f is an odd function.
- g is a periodic function with period 4.

x	-2	-1	0	2	3
$f(x)$	4	2	a	b	7

a. [3 points] Find the values of a and b.

Solution: Since f is odd, the following holds for every x in $(-\infty,+\infty): f(-x)=-f(x)$. Therefore:
$f(2)=-f(-2)=-4$ and $f(0)=-f(0)$, which means that $f(0)=0$.
b. [3 points] Find a formula for $g(x)$ for x in $[2,4]$.

Solution: Since g is a periodic function with period 4, we know that $g(2)=g(6)=4$ and $g(4)=g(8)=0$.
The function g is also piecewise linear. Therefore, the slope is : $\frac{0-4}{4-2}=-2$ and by the point-slope formula we get: $g(x)=-2(x-2)+4$.

$$
g(x)=-2(x-2)+4 \quad \text { for } x \text { in }[2,4] .
$$

c. [6 points] Compare the following values by writing one of the symbols: " < ", " >" or $"="$ in the blank. If the relationship cannot be determined using the information given, write " N " in the blank.
i. [2 points] $g(f(-1))=g(f(1))$
ii. [2 points] $g(14)$ \qquad $g(5)$
iii. [2 points] $f(g(3))=f(g(-3))$

