
1. [9 points] Use the following diagram to answer the questions for this problem. Give your answers in **exact** form in terms of sin, cos, tan, and θ . Do not assume θ is a specific value.

a. [2 points] Find the length of x.

$$x = \sqrt{2^2 + 8^2} = \sqrt{68}$$

z =

w =

y =

 $\frac{8}{\sin(\theta)}$

 $\frac{8}{\tan(\theta)}$

 $\sqrt{(w+2)^2+8^2}$

- **b**. [2 points] Find the length of z.
- c. [3 points] Find the length of w.

d. [2 points] Find the length of
$$y$$
 in terms of w .

- [2 points] 1 ind the length of y in terms of w.
- [6 points] Determine whether the following functions are even, odd, or neither even nor odd. Circle your answer. You do no need to show any work for this problem.
 - **a**. [2 points] The function $x^2 + x + 1$ is

EVENODDNEITHERb. [2 points]The function $\frac{x^4 + 1}{x^3 - x}$ isEVENODDNEITHERc. [2 points]The function $3x \sin(x)$ is

EVEN ODD NEITHER