6. [10 points] Below is a graph of the function $S(z)$. The function has a horizontal asymptote at $y=-4$, and vertical asymptotes at $z=-4$ and $z=3$. The point P is located at the coordinates $(4,-1)$.

a. [4 points]

For $z>3$, the formula for $S(z)$ is of the form $\log (z-h)+k$. In exact form, find the values of h and k using the fact that $P=(4,-1)$ and the fact that $z=3$ is a vertical asymptote of $S(z)$.

Solution: $\log (z)$ usually has an asymptote at $z=0$, so for the asymptote to appear at $z=3$, we need a horizontal shift to the right by 3 units. This gives us that $h=3$. With this, we can plug in the point P to get

$$
\begin{aligned}
-1 & =\log (4-3)+k \\
& =\log (1)+k \\
& =k
\end{aligned}
$$

$$
\begin{aligned}
h & =\frac{3}{-1} \\
k & =\begin{array}{r}
-1
\end{array}
\end{aligned}
$$

Let $T(z)=3 S(-0.5(z-3))-8$.
Note: The next two parts of this problem are about $T(z)$, not about the original function!
b. [4 points] Find the vertical asymptote(s) of $T(z)$. Circle your answer(s).

Solution: The vertical asymptotes of $T(z)$ only depend on the horizontal transformations applied to $S(z)$. We see that the transformations applied are a reflection about the y axis, followed by a horizontal stretch by a factor of 2 , and then a horizontal shift to the right by 3 . Applying these to the vertical asymptotes, we get

$$
\begin{gathered}
z=2(-3)+3=-3 \\
z=2(-(-4))+3=11
\end{gathered}
$$

c. [2 points] Find $\lim _{z \rightarrow \infty} T(z)$.

Solution: Note that

$$
\lim _{z \rightarrow \infty} T(z)=\lim _{z \rightarrow-\infty} 3 S(-0.5(z-3))-8=3\left(\lim _{z \rightarrow-\infty} S(z)\right)-8
$$

Since $\lim _{z \rightarrow-\infty} S(z)=-4$, we have

$$
\lim _{z \rightarrow \infty} T(z)=3(-4)-8=-20
$$

$$
\lim _{z \rightarrow \infty} T(z)=-20
$$

