8. [8 points] Archaeologists have discovered what seems to be scientific research papers near some dinosaur fossils. The papers talk about the "danger level", L, of a potential asteroid impact. From what they can read, the formula is given by

$$
L=3 \log \left(\frac{4 M}{k}\right)
$$

where M is the mass of the asteroid, in kg , and k is a positive constant. For this problem, leave all your answers in exact form.
a. [4 points]

Suppose an asteroid has a danger level of 7.5 . What would the mass of the asteroid be? Your answer should include units, and may involve the constant k.

Solution:

$$
\begin{aligned}
10^{7.5} & =10^{3 \log \left(\frac{4 M}{k}\right)} \\
& =10^{\log \left(\left(\frac{4 M}{k}\right)^{3}\right)} \\
& =\left(\frac{4 M}{k}\right)^{3}
\end{aligned}
$$

Solving then gives $M=\frac{k}{4}\left(10^{7.5 / 3}\right)$

$$
\text { Mass }=\frac{\frac{k}{4}\left(10^{7.5 / 3}\right)}{}
$$

b. [4 points]

Let N be the danger level of an asteroid of mass $12 A \mathrm{~kg}$, and let n be the danger level of an asteroid of mass $5 A \mathrm{~kg}$, where A is a positive constant.
Compute $N-n$. Simplify your answer so that it does not include k or A.
Solution: We have $N=3 \log \left(\frac{4(12 A)}{k}\right)$ and $n=3 \log \left(\frac{4(5 A)}{k}\right)$. Setting up the difference, we get

$$
\begin{aligned}
N-n & =3 \log \left(\frac{4(12 A)}{k}\right)-3 \log \left(\frac{4(5 A)}{k}\right) \\
& =3\left(\log \left(\frac{4(12 A)}{k}\right)-\log \left(\frac{4(5 A)}{k}\right)\right) \\
& =3\left(\log \left(\frac{48 A)}{k} \cdot \frac{k}{20 A}\right)\right) \\
& =3 \log \left(\frac{48}{20}\right)
\end{aligned}
$$

Where we used a log rule in the third line.

$$
N-n=\quad 3 \log \left(\frac{12}{5}\right)
$$

