8. [8 points] Archaeologists have discovered what seems to be scientific research papers near some dinosaur fossils. The papers talk about the “danger level”, \(L \), of a potential asteroid impact. From what they can read, the formula is given by

\[
L = 3 \log \left(\frac{4M}{k} \right)
\]

where \(M \) is the mass of the asteroid, in kg, and \(k \) is a positive constant. For this problem, leave all your answers in **exact** form.

a. [4 points]

Suppose an asteroid has a danger level of 7.5. What would the mass of the asteroid be? Your answer should include units, and may involve the constant \(k \).

Solution:

\[
10^{7.5} = 10^{3 \log \left(\frac{4M}{k} \right)}
\]

\[
= 10^{\log \left(\left(\frac{4M}{k} \right)^3 \right)}
\]

\[
= \left(\frac{4M}{k} \right)^3
\]

Solving then gives \(M = \frac{k}{4} \left(10^{7.5/3} \right) \)

Mass = \(\frac{k}{4} \left(10^{7.5/3} \right) \)

b. [4 points]

Let \(N \) be the danger level of an asteroid of mass \(12A \) kg, and let \(n \) be the danger level of an asteroid of mass \(5A \) kg, where \(A \) is a positive constant. Compute \(N − n \). Simplify your answer so that it does **not** include \(k \) or \(A \).

Solution: We have \(N = 3 \log \left(\frac{4(12A)}{k} \right) \) and \(n = 3 \log \left(\frac{4(5A)}{k} \right) \). Setting up the difference, we get

\[
N − n = 3 \log \left(\frac{4(12A)}{k} \right) − 3 \log \left(\frac{4(5A)}{k} \right)
\]

\[
= 3 \left(\log \left(\frac{4(12A)}{k} \right) − \log \left(\frac{4(5A)}{k} \right) \right)
\]

\[
= 3 \left(\log \left(\frac{48A}{k} \cdot \frac{k}{20A} \right) \right)
\]

\[
= 3 \log \left(\frac{48}{20} \right)
\]

Where we used a log rule in the third line.

\[
N − n = 3 \log \left(\frac{12}{5} \right)
\]