2. [7 points] The following parts are unrelated.

a. [4 points]

An invertible function, g(x), has domain and range all real numbers; the following table gives some specific values.

x	-2	-1	-0.3	0	1	2	3
g(x)	5	3	1	0	-1	-2	-8

Using this table, write down exact values for the following expressions, or write "not enough information" if there is no way to tell.

i. $g^{-1}(3)$. ii. $2g^{-1}(g(101))$ iii. $(q(2))^{-1}$. iv. g(g(1)).

Solution:

i. $g^{-1}(3) = -1$. ii. $2g^{-1}(g(101)) = 202$. iii. $(g(2))^{-1} = -1/2$. iv. g(g(1)) = g(-1) = 3. i. $g^{-1}(3) = -1$.

b. [3 points] Let $C(t) = e^{t^2+1}$. Find possible functions A(t) and B(t) (with $A(t) \neq t$ and $B(t) \neq t$ such that A(B(t)) = C(t). (Note: there are several possible answers!)

Solution: There are multiple possible correct answers. Here are some possibilities:

- $A(t) = e^t, B(t) = t^2 + 1.$ $A(t) = e^{t+1}, B(t) = t^2.$ $A(t) = et, B(t) = e^{t^2}.$