7. [12 points] A race car is traveling around a circular racetrack at constant speed. It starts at the 3 o'clock position and moves counter-clockwise around a circular track that has radius 600 meters.
It takes $2 / 3$ of a minute for the car to go from the starting point to the point marked Q.

a. [3 points] What is the speed of the car in meters per minute? Note that the given angle is $2 \pi / 3$ radians.

Solution: We first need the distance the car has traveled. The car has gone $1 / 3$ of the full circumference of the circle. The circumference is $2 \pi R$, where $R=500,600$, or 700 , and so the distance is $2 \pi R / 3$. Since it took $2 / 3$ of a minute to do so, the speed is

$$
\frac{2 \pi R / 3}{2 / 3}=\pi R .
$$

Depending on your R, this will be $500 \pi, 600 \pi$, or 700π.
b. [4 points] Write a formula for $P(t)$, the x-coordinate of the car's position t minutes after the car leaves the start line, where the center of the track is at the origin. Your answer will be a sinusoidal function, and all constants should be left in exact form.

Solution: The formula will be

$$
P(t)=R \cos (\pi t)
$$

(where again $R=500,600$ or 700).
c. [5 points] Using your answer to part b., what are the first two positive values of t (in exact form) at which the x-coordinate of the car is equal to 100 ?

Solution: To find the first solution, set $P(t)=100$ and solve using inverse trig functions:

$$
\begin{aligned}
R \cos (\pi t) & =100 \\
\cos (\pi t) & =100 / R \quad(100 / R \text { will be } 1 / 5,1 / 6, \text { or } 1 / 7) \\
\pi t & =\arccos (100 / R) \\
t & =\frac{\arccos (100 / R)}{\pi}
\end{aligned}
$$

To find the second solution, add a period (2 minutes) to the negative of the first solution:

$$
t=-\frac{\arccos (100 / R)}{\pi}+2
$$

(Again, $100 / R$ will be $1 / 5,1 / 6$, or $1 / 7$.)

