2. [11 points] As the Smashing Squash are touring, their merchandise varies in value in a way that can be modeled by a periodic function. Let $W=P(t)$ be the value (in thousands of dollars) of an autographed vinyl record at time t (in months). Suppose that $P(t)$ is a periodic function with period less than 18 months. Part of the graph of $W=P(t)$ is shown below.

You do not need to show work for this problem.
a. [1 point] Find the average rate of change of $P(t)$ between $t=8$ and $t=16$.

Answer: $\frac{4-12}{16-8}=\frac{-8}{8}=-1$.
b. [2 points] Find the period of $P(t)$. Include units in your answer.

Answer: $17-8=9$ months
c. [2 points] Find the amplitude of the function $P(t)$. Include units in your answer.

Answer: $\frac{18-4}{2}=7$ thousand dollars
d. [2 points] Find the equation of the midline of the function $P(t)$.

Answer:

$$
W=4+7=11
$$

e. [2 points] Find the smallest value of t that satisfies $t>20$ and at which point the record has a value of $\$ 4,000$.

Answer: $\quad 16+9=25$
f. [2 points] Let $k(t)=-100 P(2 t)$. What is the period of $k(t)$?

$$
\lambda
$$

$$
\begin{aligned}
& \text { horizontal compression } \quad \frac{1}{2} \cdot 9=4.5 \\
& \text { by a factor of } \frac{1}{2} \text { Answer: }
\end{aligned}
$$

