1. [9 points] Consider the table of known values for the functions $f(x)$ and $h(x)$, where $f(x)$ is invertible.

x	-4	-2	-1	0	1	2	4
$f(x)$	2	3	0	-2	-1	4	5
$h(x)$	$?$	2	1	4	0	$?$	7

a. [4 points] Find each of the following, or write N/A if a value does not exist or there is not enough information to find it.
(i) $f^{-1}(0)$

Answer: $f^{-1}(0)=$ \qquad
(ii) $\quad f(h(0))$

Answer: $\quad f(h(0))=$ \qquad
(iii) $\quad h(g(1))$, where $g(x)=\log (x)$

Answer: $\quad h(g(1))=$ \qquad
(iv) $k(1)$, where $k(x)=-4 f(2(x+1))-6$

Answer: $k(1)=$ \qquad
b. [2 points] If $f(h(2))=0$, then what is $h(2)$?

Answer: $h(2)=$ \qquad
c. [3 points] Give a value for $h(-4)$ that would guarantee that $h(x)$ is not invertible and explain (in at most 1 sentence) why your value for $h(-4)$ forces the function to be non-invertible.

Answer: $\quad h(-4)=$

Explanation:

2. [4 points] Use the graph of $y=10^{x}$ below to decide whether each of the following statements is true (T), false (F), or there is not enough information to tell (NEI).

