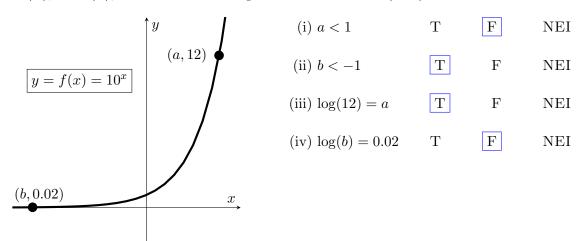
1. [9 points] Consider the table of known values for the functions f(x) and h(x), where f(x) is invertible.

x	-4	-2	-1	0	1	2	4
f(x)	2	3	0	-2	-1	4	5
h(x)	?	2	1	4	0	?	7

a. [4 points] Find each of the following, or write N/A if a value does not exist or there is not enough information to find it.

- (i) $f^{-1}(0)$ Answer: $f^{-1}(0) = -1$
- (ii) f(h(0))
- (iii) h(g(1)), where $g(x) = \log(x)$ **Answer:** h(g(1)) = **4**
- (iv) k(1), where k(x) = -4f(2(x+1)) 6**Answer:** k(1) = -26
- **b.** [2 points] If f(h(2)) = 0, then what is h(2)? **Answer:** h(2) = -1
- c. [3 points] Give a value for h(-4) that would guarantee that h(x) is not invertible and explain (in at most 1 sentence) why your value for h(-4) forces the function to be non-invertible.


Answer: h(-4) = 7 (or any of: 2, 1, 4, 0)

Answer: f(h(0)) =_____5

Explanation:

Solution: If h(-4) = 7 = h(4), then we have two inputs of h with the same output.

2. [4 points] Use the graph of $y = 10^x$ below to decide whether each of the following statements is true (T), false (F), or there is not enough information to tell (NEI).

