Recall: A bacteria colony C has population $C(t)$, where t is measured in hours since the colony was established. The formulas for this function is

$$
C(t)=100 \cdot e^{2 t}
$$

d. [3 points] Find a formula for $g(P)$, a function that gives the amount of time (in hours) it takes for colony C to reach P bacteria.

Solution: We are being asked to find $C^{-1}(P)$. We do this by solving $P=C(t)$ for t :

$$
\begin{aligned}
P & =100 e^{2 t} \\
P / 100 & =e^{2 t} \\
\ln (P / 100) & =2 t \\
t=\frac{1}{2} \ln (P / 100) &
\end{aligned}
$$

Answer: $g(P)=\frac{1}{2} \ln (P / 100)$
4. [7 points] Let $g(x)=2 \cdot(0.5)^{-3 x}-6$.
a. [5 points] List the transformations you need to apply to the graph of $y=0.5^{x}$ to transform it to that of $y=g(x)$. Fill each space with either a number or one of the phrases below, as appropriate. (Leave the second blank empty for reflections.)

Solution: One note: the only order here that matters is that the vertical stretch happens before the shift down.
First, reflect it across the y-axis by \qquad
then, \qquad by \qquad
then, \qquad by 2
then, \qquad by \qquad
b. [2 points] Give equations for all vertical and horizontal asymptotes of $g(x)$. If there are none, write None.

Answer: Vertical Asymptotes: \qquad
None

Answer: Horizontal Asymptotes: \qquad

