4. [7 points] On a warm fall day, Schinella decides to walk home from work. Let $d=f(t)$ be the function giving Schinella's distance from work, in miles, t minutes after she leaves work.
a. [3 points] Her walk home from work is 3 miles. Schinella wants to write a new function $g(h)$ that gives her distance from home, in miles, h hours after she leaves work. Write a formula for $g(h)$ in terms of f.

$$
g(h)=
$$

\qquad
b. [2 points] Schinella (who is from Canada) wants to write another new function $k(t)$ that gives her distance from work in kilometers t minutes after she leaves work. Given that 1 mile is about 1.6 kilometers, circle the correct formula for $k(t)$ below.

$$
1.6 f(t) \quad f(1.6 t) \quad \frac{1}{1.6} f(t) \quad f\left(\frac{t}{1.6}\right)
$$

c. [2 points] Let $c(t)$ be the function that gives the number of episodes of the podcast Canadaland that Schinella has listened to in the first t minutes of her walk. Assume that both $c(t)$ and $f(t)$ are invertible. Using those functions or their inverses, write an expression for Schinella's distance from work, in miles, after she's listened to 2.5 episodes of Canadaland while walking home.
5. [13 points]
a. [4 points] A zookeeper has determined that the function $w(t)$ below provides a good model of the weight, in ounces, of a certain kind of snake t years after it hatches.

$$
w(t)=-2 e^{-(t-16) / 5}+52
$$

Find the value of each of the following as numbers rounded to two decimal places. Then briefly interpret what each quantity means in the context of the problem.
i. $w(0)=$ \qquad Meaning:
ii. $\lim _{t \rightarrow \infty} w(t)=$ \qquad Meaning:

