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3. [15 points] A scientist is observing two different ant colonies under different experimental
conditions. From her data, it looks like

• Colony A’s population increases by 10% every two hours.

• Colony B’s population decreases by 7% every hour.

a. [1 point] By what factor is Colony A’s population multiplied each hour? Give your answer
in exact form or rounded to two decimal places.

a factor of:
√
1.1 ≈ 1.049

b. [2 points] What is the continuous decay rate of Colony B per hour as a percentage? Give
your answer in exact form or rounded to two decimal places.

Solution: A 7% decay rate means we have a growth factor of 0.93. So we need to find
the value of k such that ek ≙ 0.93. This is equivalent to k ≙ ln(0.93) ≈ −.07257. Since we
are asked for the decay rate, we should give the positive version, and give it as a percent:∣ln(0.93)∣ × 100 % or− ln(0.93) × 100 % or 7.257%.

− ln(0.93)×100 ≈ 7.257 %

c. [2 points] How long will it take for Colony B to reach 25% of its original size? Show all
work. Give your answer in exact form or rounded to two decimal places.

Solution: We need to solve for t:

Q00.93
t ≙ 0.25Q0

0.93t ≙ 0.25
ln(0.93t) ≙ ln(0.25)
t ln(0.93) ≙ ln(0.25)

t ≙ ln 0.25

ln 0.93

ln 0.25
ln 0.93

≈ 19.103
hours

d. [4 points] If Colony A starts with 1000 ants and Colony B starts with 10,000 ants, after
how many hours will the colonies have equal populations? Show all work. Give your
answer in exact form or rounded to two decimal places.
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Solution: A formula for the number of ants in Colony A is 1000 ⋅ (√1.1)t. A formula
for the number of ants in Colony B is 10000 ⋅ 0.93t. We want to find the value of t that
makes these two functions equal. That is, we need to solve the following for t:

1000 ⋅ (√1.1)t ≙ 10000 ⋅ 0.93t
(
√
1.1

0.93
)
t

≙ 10
log(

√
1.1

0.93
)
t

≙ log 10
t log(

√
1.1

0.93
) ≙ 1
t ≙ 1

log (√1.1
0.93
) ≈ 19.152

Another way to solve the same starting equation is shown below. Note that the final
answers will look different. But we can either use a calculator or log identities to see
that they are actually equivalent.

1000 ⋅ (√1.1)t ≙ 10000 ⋅ 0.93t
ln(1000 ⋅ (√1.1)t) ≙ ln(10000 ⋅ 0.93t)

ln(1000) + ln(√1.1)t) ≙ ln(10000) + ln(0.93t)
ln(1000) + t ln(√1.1)) ≙ ln(10000) + t ln(0.93)
t ln(√1.1)) − t ln(0.93) ≙ ln(10000) − ln(1000)
t (ln(√1.1) − ln(0.93)) ≙ ln(10000) − ln(1000)

t ≙ ln(10000) − ln(1000)
ln(√1.1) − ln(0.93) ≈ 19.152

1

log(
√

1.1

0.93
) ≈ 19.152

hours

(Problem continues on the next page.)
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The scientist now observes two additional different ant colonies. From her data, it looks like

• Colony C’s population doubles for the first time after 2.5 hours; doubles again 1.5 hours
after that; then doubles a third time 1 hour after that.

• Colony D’s population is given by P ≙D(t) ≙ 1200− 300e−0.11t, where P is the number of
ants and t is measured in hours since the experiment started.

e. [2 points] Is Colony C growing exponentially? Circle your answer below. If Yes, find its
growth factor. If No, explain why not.

Yes No

Explanation or Growth Factor:

Solution:
No.

Any exponentially growing function should have a constant doubling time. Since the
doubling time of this function is changing, it cannot be growing exponentially.

f. [4 points] Find a general formula D−1(P ) and explain what that function means. Show
all work.

Solution: We need to solve P ≙ 1200− 300e−0.11t for t, which will give us t as a function
of P— in other words, our inverse function.

P ≙ 1200 − 300e−0.11t
P − 1200 ≙ −300e−0.11t
P − 1200
−300 ≙ 1200 − P

300
≙ e−0.11t

ln(1200 − P
300

) ≙ −0.11t
t ≙ 1

−0.11 ln(1200 − P
300

)

D−1(P ) ≙ 1
−0.11 ln (1200−P300

)
Meaning of D−1(P ):
Solution: D−1(P ) gives us the number of hours after the experiment started at which there
are P ants in Colony D.


