3. [15 points] A scientist is observing two different ant colonies under different experimental conditions. From her data, it looks like

- Colony A's population increases by 10% every two hours.
- Colony B's population decreases by 7% every hour.
a. [1 point] By what factor is Colony A's population multiplied each hour? Give your answer in exact form or rounded to two decimal places.
a factor of: $\sqrt{1.1} \approx 1.049$
b. [2 points] What is the continuous decay rate of Colony B per hour as a percentage? Give your answer in exact form or rounded to two decimal places.

Solution: A 7% decay rate means we have a growth factor of 0.93 . So we need to find the value of k such that $e^{k}=0.93$. This is equivalent to $k=\ln (0.93) \approx-.07257$. Since we are asked for the decay rate, we should give the positive version, and give it as a percent: $|\ln (0.93)| \times 100 \%$ or $-\ln (0.93) \times 100 \%$ or 7.257%.

$$
-\ln (0.93) \times 100 \approx 7.257 \%
$$

c. [2 points] How long will it take for Colony B to reach 25% of its original size? Show all work. Give your answer in exact form or rounded to two decimal places.
Solution: We need to solve for t :

$$
\begin{aligned}
Q_{0} 0.93^{t} & =0.25 Q_{0} \\
0.93^{t} & =0.25 \\
\ln \left(0.93^{t}\right) & =\ln (0.25) \\
t \ln (0.93) & =\ln (0.25) \\
t & =\frac{\ln 0.25}{\ln 0.93}
\end{aligned}
$$

$$
\frac{\ln 0.25}{\ln 0.93} \approx 19.103
$$

d. [4 points] If Colony A starts with 1000 ants and Colony B starts with 10,000 ants, after how many hours will the colonies have equal populations? Show all work. Give your answer in exact form or rounded to two decimal places.

Solution: A formula for the number of ants in Colony A is $1000 \cdot(\sqrt{1.1})^{t}$. A formula for the number of ants in Colony B is $10000 \cdot 0.93^{t}$. We want to find the value of t that makes these two functions equal. That is, we need to solve the following for t :

$$
\begin{aligned}
1000 \cdot(\sqrt{1.1})^{t} & =10000 \cdot 0.93^{t} \\
\left(\frac{\sqrt{1.1}}{0.93}\right)^{t} & =10 \\
\log \left(\frac{\sqrt{1.1}}{0.93}\right)^{t} & =\log 10 \\
t \log \left(\frac{\sqrt{1.1}}{0.93}\right) & =1 \\
t & =\frac{1}{\log \left(\frac{\sqrt{1.1}}{0.93}\right)} \approx 19.152
\end{aligned}
$$

Another way to solve the same starting equation is shown below. Note that the final answers will look different. But we can either use a calculator or \log identities to see that they are actually equivalent.

$$
\begin{aligned}
1000 \cdot(\sqrt{1.1})^{t} & =10000 \cdot 0.93^{t} \\
\ln \left(1000 \cdot(\sqrt{1.1})^{t}\right) & =\ln \left(10000 \cdot 0.93^{t}\right) \\
\left.\ln (1000)+\ln (\sqrt{1.1})^{t}\right) & =\ln (10000)+\ln \left(0.93^{t}\right) \\
\ln (1000)+t \ln (\sqrt{1.1})) & =\ln (10000)+t \ln (0.93) \\
t \ln (\sqrt{1.1}))-t \ln (0.93) & =\ln (10000)-\ln (1000) \\
t(\ln (\sqrt{1.1})-\ln (0.93)) & =\ln (10000)-\ln (1000) \\
t & =\frac{\ln (10000)-\ln (1000)}{\ln (\sqrt{1.1})-\ln (0.93)} \approx 19.152
\end{aligned}
$$

 hours

The scientist now observes two additional different ant colonies. From her data, it looks like

- Colony C's population doubles for the first time after 2.5 hours; doubles again 1.5 hours after that; then doubles a third time 1 hour after that.
- Colony D's population is given by $P=D(t)=1200-300 e^{-0.11 t}$, where P is the number of ants and t is measured in hours since the experiment started.
e. [2 points] Is Colony C growing exponentially? Circle your answer below. If Yes, find its growth factor. If No, explain why not.
Yes No

Explanation or Growth Factor:

Solution:

No.
Any exponentially growing function should have a constant doubling time. Since the doubling time of this function is changing, it cannot be growing exponentially.
f. [4 points] Find a general formula $D^{-1}(P)$ and explain what that function means. Show all work.
Solution: We need to solve $P=1200-300 e^{-0.11 t}$ for t, which will give us t as a function of P - in other words, our inverse function.

$$
\begin{aligned}
& P=1200-300 e^{-0.11 t} \\
& P-1200=-300 e^{-0.11 t} \\
& \frac{P-1200}{-300}=\frac{1200-P}{300}=e^{-0.11 t} \\
& \ln \left(\frac{1200-P}{300}\right)=-0.11 t \\
& t=\frac{1}{-0.11} \ln \left(\frac{1200-P}{300}\right) \\
& D^{-1}(P)=\frac{\frac{1}{-0.11} \ln \left(\frac{1200-P}{300}\right)}{}
\end{aligned}
$$

Meaning of $D^{-1}(P)$:
Solution: $\quad D^{-1}(P)$ gives us the number of hours after the experiment started at which there are P ants in Colony D.

