page 5

- **3**. [15 points] A scientist is observing two different ant colonies under different experimental conditions. From her data, it looks like
 - Colony A's population increases by 10% every two hours.
 - Colony B's population decreases by 7% every hour.
 - **a**. [1 point] By what factor is Colony A's population multiplied each hour? *Give your answer* in exact form or rounded to two decimal places.

a factor of: $\sqrt{1.1} \approx 1.049$

b. [2 points] What is the *continuous* decay rate of Colony B per hour as a percentage? *Give* your answer in exact form or rounded to two decimal places.

Solution: A 7% decay rate means we have a growth factor of 0.93. So we need to find the value of k such that $e^k = 0.93$. This is equivalent to $k = \ln(0.93) \approx -.07257$. Since we are asked for the *decay* rate, we should give the positive version, and give it as a percent: $|\ln(0.93)| \times 100 \%$ or $-\ln(0.93) \times 100 \%$ or 7.257%.

 $-\ln(0.93) \times 100 \approx 7.257$ %

c. [2 points] How long will it take for Colony B to reach 25% of its original size? Show all work. Give your answer in exact form or rounded to two decimal places.

Solution: We need to solve for t:

 $Q_0 0.93^t = 0.25Q_0$ $0.93^t = 0.25$ $\ln(0.93^t) = \ln(0.25)$ $t \ln(0.93) = \ln(0.25)$ $t = \frac{\ln 0.25}{\ln 0.93}$

 $\frac{\ln 0.25}{\ln 0.93} \approx 19.103$ hours

d. [4 points] If Colony A starts with 1000 ants and Colony B starts with 10,000 ants, after how many hours will the colonies have equal populations? Show all work. Give your answer in exact form or rounded to two decimal places.

Solution: A formula for the number of ants in Colony A is $1000 \cdot (\sqrt{1.1})^t$. A formula for the number of ants in Colony B is $10000 \cdot 0.93^t$. We want to find the value of t that makes these two functions equal. That is, we need to solve the following for t:

$$1000 \cdot (\sqrt{1.1})^{t} = 10000 \cdot 0.93^{t}$$
$$\left(\frac{\sqrt{1.1}}{0.93}\right)^{t} = 10$$
$$\log\left(\frac{\sqrt{1.1}}{0.93}\right)^{t} = \log 10$$
$$t \log\left(\frac{\sqrt{1.1}}{0.93}\right) = 1$$
$$t = \frac{1}{\log\left(\frac{\sqrt{1.1}}{0.93}\right)} \approx 19.152$$

Another way to solve the same starting equation is shown below. Note that the final answers will look different. But we can either use a calculator or log identities to see that they are actually equivalent.

$$1000 \cdot (\sqrt{1.1})^{t} = 10000 \cdot 0.93^{t}$$
$$\ln(1000 \cdot (\sqrt{1.1})^{t}) = \ln(10000 \cdot 0.93^{t})$$
$$\ln(1000) + \ln(\sqrt{1.1})^{t}) = \ln(10000) + \ln(0.93^{t})$$
$$\ln(1000) + t \ln(\sqrt{1.1})) = \ln(10000) + t \ln(0.93)$$
$$t \ln(\sqrt{1.1}) - t \ln(0.93) = \ln(10000) - \ln(1000)$$
$$t \left(\ln(\sqrt{1.1}) - \ln(0.93)\right) = \ln(10000) - \ln(1000)$$
$$t = \frac{\ln(10000) - \ln(1000)}{\ln(\sqrt{1.1}) - \ln(0.93)} \approx 19.152$$

(Problem continues on the next page.)

The scientist now observes two additional different ant colonies. From her data, it looks like

- Colony C's population doubles for the first time after 2.5 hours; doubles again 1.5 hours after that; then doubles a third time 1 hour after that.
- Colony D's population is given by $P = D(t) = 1200 300e^{-0.11t}$, where P is the number of ants and t is measured in hours since the experiment started.
- e. [2 points] Is Colony C growing exponentially? Circle your answer below. If YES, find its growth factor. If No, explain why not.

Yes No

Explanation or Growth Factor:

Solution: No.

Any exponentially growing function should have a *constant* doubling time. Since the doubling time of this function is changing, it cannot be growing exponentially.

f. [4 points] Find a general formula $D^{-1}(P)$ and explain what that function means. Show all work.

Solution: We need to solve $P = 1200 - 300e^{-0.11t}$ for t, which will give us t as a function of P— in other words, our inverse function.

Meaning of $D^{-1}(P)$:

Solution: $D^{-1}(P)$ gives us the number of hours after the experiment started at which there are P ants in Colony D.